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ABSTRACT 

Structural failure of transmission line systems is often attributed to dynamic effects such 

as a broken conductor, a broken insulator, or conductor galloping. The focus of this research 

was to develop a computer program, DYNTRN, that can analyze the structural response of a 

transmission line system due to dynamic effects, and present the response in a graphical form. 

The program uses the stiffness method to analyze a system consisting of conductors, 

insulators, and support structures. Four types of elements can be used to model the 

transmission line components: beam elements, cable elements, truss elements, and spring 

elements. A dynamic condensation method was introduced to efficiently model cable 

elements. Geometric nonlinearities were accounted for using the Newton-Raphson method. 

State-of-the-art software tools and object oriented design were used to develop a program that 

is modular and interactive. An object oriented method was developed to efficiently store and 

solve the stifftiess matrix of the structure. Results obtained from the program were verified 

using commercial finite element software. The program was also validated using published 

experimental work. The final product of this research is a computer program that can 

graphically simulate dynamic behavior of transmission lines. 
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CHAPTER 1 - INTRODUCTION 

1.1 Background 

Strucuiral failure of transmission lines due to extreme weather related conditions is 

among the major problems facing the power industry. Losses arising from these failures are 

not only due to the loss of business resulting from electricity outages, but are also due to the 

cost of repairs. 

Designing a transmission line support structure for extreme environmental conditions is a 

challenging problem due to several reasons. First, the main loads affecting transmission lines, 

such as wind and ice, are hard to predict. Secondly, most of the critical forces are dynamic in 

nature, and the response of the line to these forces is complex. A broken conductor, a broken 

insulator, or conductor galloping are examples of failure conditions that cause these critical 

forces. 

Dynamic behavior of transmission lines has been studied experimentally using fiill scale 

lines [1,2], as well as scale models [3,4]. Testing of full scale models is expensive, and can 

be limited in scope. Moreover, most of the dynamic tests produce inelastic deformations and 

broken components, making it hard to investigate different loading scenarios. Although scale 

model testing is less expensive than testing fiill-scale transmission lines, results produced by 

scale models are not as accurate. In addition, it is still not very economical to investigate a 

large number of alternative loading conditions using scale models. 

Computer modeling can be an attractive alternative. This is least expensive, and in many 

cases can provide accurate results, particularly when experimental data can be used to 

validate the computer model. Computer modeling is also an efficient way for conducting 

parametric studies that can yield a better understanding of the structural behavior of the line. 

Results obtained from computer models are also more comprehensive. For example, stress or 

strain can be checked at any location; in contrast, an experimental model will only provide 

results at a finite number of locations. Graphical simulation is an added advantage to 

computer modeling, as the structural behavior of the line can be visualized. 

There are a wide variety of structural analysis programs that can perform both static and 
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dynamic analyses, utilizing finite element techniques to solve for unknown structural 

displacements and stresses. Most of these programs, however, are not adequate for failure 

analysis of transmission lines. Some programs have been developed specifically for the 

analysis of transmission lines, such as ETADS [5], CABLE? [6], and BROKE [7]. ETADS, 

however, is oriented toward static analysis, and does not account for the dynamic effects 

occurring within the span of the cable element'. CABLE? is a two-dimensional program, and 

accounts for the effects of the transmission line support structures by utilizing linear springs. 

BROKE, on the other hand, models a conductor using a single linear truss element along the 

span of the conductor. This approximation does not accurately represent the dynamic 

behavior of the cable within its span. Both CABLE? and BROKE are limited to specific types 

of analyses, such as the broken conductor analysis. 

1.2 Objective 

The objective of the research presented herein was to develop an analytical tool that is 

capable of analyzing a complete transmission line subjected to different dynamic loading 

conditions, such as a galloping conductor, a broken conductor or a broken insulator. An 

additional objective was that the software be capable of presenting the results in a graphical 

form to achieve better understanding of the structural behavior of the transmission line. To 

achieve this goal, a software referred to as DYNTRN, which is capable of analyzing the main 

components of a transmission line such as conductors, support structures, and insulators, was 

developed. 

1.3 Methodology 

DYNTRN used the stiffness method to calculate the deformations and forces in the 

transmission line components. The primary challenge in the development of the software was 

the representation of the cable element. Due to the nonhnear problem associated with the 

' This applies to ETADS version 2.15C 
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dynamic behavior of the cable element, it was necessary to represent the cable element using 

a number of internal sub-elements, such as axial tension-only elements. A method was 

developed to extend the static condensation method to dynamic nonlinear problems. This 

technique allowed the use of special routines that can minimize numerical instabilities within 

the span of the cable and speed up the convergence process. 

Another challenge faced in the development process was the size of the finite element 

model of the transmission line. A transmission line computer model usually consists of 

several support structures, with several spans of conductor phases attached. The stiffness 

matrix produced during this process is usually sparse, i.e., most of its elements are zero. 

Therefore, a pointer-based method was developed to efficiently store and solve sparse 

matrices. Pointers are programming variables that store computer memory addresses. 

The next issue in the development process involved the means of development, or 

programming. The main priority was to develop a software that was highly interactive, 

modular, and possessed good graphical capabilities. Therefore, Object Oriented Programming 

(OOP) was the progranmiing method of choice. OOP is a programming philosophy that 

produces a software code that is easy to maintain and modify. 

Developing a software to simulate conductor galloping was also another challenge. The 

objective here was not to develop a galloping model, but rather to document several galloping 

models, and allow the user to decide which of these to be used. There are several models 

present in the literature to calculate or predict the amplitude and shape of galloping. 

Galloping amplitudes provided by any of these galloping models may be used as input to the 

dynamic program, DYNTRN. 

The final step in the development process was the validation of the dynamic analysis 

program, DYNTRN. This was accomplished by comparing DYNTRN results with closed 

form solutions, or other finite element programs. In addition, DYNTRN was calibrated using 

pertinent published experimental data by others. 
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CHAPTER 2 - LITERATURE REVIEW 

As stated in chapter one, the objective of this research was to develop a computer 

software capable of analyzing a complete transmission line due to dynamic events such as a 

conductor galloping event, a broken conductor event, or a broken insulator event. Because the 

cable element, which is used to model a conductor, is of primary importance in any 

transmission line analysis program, it was necessary to study cable behavior and investigate 

the different methods developed for modeling this element. Previous studies related to the 

calculation of the static or dynamic effect of a broken conductor or a broken insulator were 

also reviewed. Experimental data published in the literature was used to validate the 

software, DYNTRN. 

An extensive review of the different models developed to analyze conductor galloping 

was also undertaken. A large number of models were found in the literature, ranging from 

simple models to extremely complex and detailed models. In the opinion of the author of this 

work, the choice of galloping model depends on the input available to the user, and the 

accuracy sought from the analysis. The literature review presented herein is intended to 

inform the user of DYNTRN about the different galloping models published in the literature, 

since galloping amplitude and frequency represent an essential part of the input for the 

galloping analysis performed by DYNTRN. 

One of the objectives of the work presented herein was to develop a highly interactive 

program allowing the user to investigate different analysis scenarios. To accomplish this 

objective, literature related to Object Oriented Programming (OOP) technique was reviewed, 

and its use in structural analysis programs was investigated. 

2.1 The Cable Element 

2.1.1 Theoretical Analysis of Cables 

Cables are flexible elements that have virtually no bending stiffness. Due to the high 

flexibility of cable elements, they undergo large deflections. These deflections provide cables 
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with a sufficient stiffness to sustain applied loadings. Due to a uniform load, cables deflect in 

the form of a catenary as shown in Figure 2.1. Irvine [8] presented the catenary equation of 

the cable as follows: 

1= 
EA. w \ [H - sinh"' 

(v -w]  
H 

h = WLr 

EAr I W^'2; 

HL 
W 

1 + 
(vV-

1 + v-wV 
H J 

2.1 

Where, 

I = horizontal span, 

h = vertical distance between the support as shown in Figure 2.1, 

W = the total load on the cable, 

LQ = the original length of the cable, 

E = modulus of elasticity, 

Ao= cross sectional area of the cable, 

H = horizontal tension in the cable, 

V = vertical reaction at the left support. 

Figure 2.1 Catenary Cable 
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Irvine [8] also presented the approximation of the catenary formulas using parabolic 

equations. The parabolic equations were derived by assuming the load to be distributed on the 

span of the cable rather than the deformed profile. For flat cables, the error due to this 

assumption is acceptable. In addition. Reference [8] also smdied the dynamics of the cable 

element and the procedure to extract mode shapes for a flat horizontal cable. The mode-

shapes of a flat horizontal cable as presented in Reference [8] are listed below. 

/) For out-of-plane modes: 

ml 

TN 

H A • { nTzx 2.2 

ii) For anti-symmetric in-plane modes: 

n u  
CO = — 

" I \ 
H A • - W„= A„ sm 
m 

nwc] 

I 2.3 

-cos(mvc/[) [ 

nil 

Hi) For symmetric in-plane modes: 

tan n n 

X - I 2) 

Q. 

'  l \  

H  

m  

n n 

/ (Q 1 / \ / N \ 

1 - tan n sin Q„- - cos Q„-
\ I 2j / 

. h] " 

1 

n X 

Q. 

X- L 

Q,— - tan 

\ f ^ 1 - tan n 

/ I 2 j 
sin Q — - cos 

"I 

"l I 2j 
1 - cos - sm 

2.4 
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Where, 
v„ = mode shape in the out-of-piane direction, 

Un = mode shape in the longitudinal direction, 

w„= mode shape in the vertical direction, 

n = mode number, 

m = mass per unit length, 

g = acceleration of gravity, 

X = variable along the x axis, 

A' = (mgimfl/(HL/EAoh 

L, - 1(1+8 (d/lf), where d is the cable sag, 

L, = l[x/l + (3/8)(mgl/H)- (x/I - 2(xA)- +(4/3)(x/l)^], 

A„ = is the scaling variable for the mode. 

In contrast to the notation used by Irvine [8], the following notation for n was used in this 

review: n = one for the first symmetric mode, two for the first anti-symmetric mode, three 

for the second symmetric mode, four for the second anti-synunetric mode and so on. 

As shown above, the in-plane symmetric modes are calculated by solving the first 

equation in the series of the symmetric in plane mode-shapes equations, (iii), to obtain Q„. 

This equation is a nonlinear equation and can only be solved numerically. Irvine [8] 

performed a parametric study on the mode shapes of the cable element and found that a mode 

cross over between the symmetric and anti-symmetric modes occurred at certain values of k. 

For example at A" = 4k", the first symmetric mode, n=l, and the first anti-symmetric mode, 

n=2, crossed, i.e., they had the same frequency of vibration. The same situation occurred for 

the second symmetric mode, n=3, and the second anti-symmetric mode, n=4, at X- = 167r-. 

Irvine [8] compared the natural frequencies calculated using the flat-sag formulation to that 

calculated using deep-profile equations, and found that the error was less than 6% when the 

sag-to-span ratio was 13%. Cable mode shapes were also presented by West et al. [9] and 

Nariboli et al. [10]. 
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2.1.2 Numerical Analysis of Cable Elements 

Several numerical methods were proposed for solving cable structures. O'Brien and 

Francis [II] presented an iterative numerical method to solve a two-dimensional cable 

structure subjected to static concentrated loads. The cable segments were treated as sU-aight 

links. In subsequent work, O'Brien [12] used the catenary equations to calculate the tension in 

the cable segments instead of the straight link equations. This modification not only yielded 

better accuracy, but also allowed for analyzing a combination of uniform and concenu^ated 

loadings on the cable. In his work, O'Brien [12] also generalized the method to a three-

dimensional static analysis. Similar methods were developed by Skop and Ohara [13,14]. 

Peyrot et al. [15,16] presented an iterative method for solving static and dynamic 

problems involving cable elements. The method was based on the catenary cable equations, 

and was used to develop a numerical algorithm to calculate the stiffness matrix of the cable 

element, thus allowing it to be used in a direct stiffness program. 

Baron and Venkatesan [17] developed the stiffness matrix of a two-nodes truss element in 

three-dimensional space, including the effect of stress stiffening. They used the direct 

stiffness method in a nonlinear iterative scheme to solve for several cable structures subjected 

to static concentrated forces. Similar methods based on two-nodes truss elements were 

developed by Webster [18], Mitsugi et al. [19] and Broughton et al. [20]. 

Desai et al. [21] formulated the stiffness matrix of a three-nodes cable element using a 

parabolic assumed function. A comparison between the three-nodes element and the two-

nodes truss element was presented in the reference, and showed that the three-nodes cable 

element is more accurate in a static analysis [21]. 

In a static analysis for a cable element subjected to uniform loads, the cable element 

developed using catenary equations is superior to other elements because of its exact 

formulation, thus allowing fewer elements to be used in the analysis. For non-uniform static 

loads, as well as in dynamic analyses, the catenary assumption for the shape of the cable 

element is no longer valid; therefore, the superiority of one formulation over the other cannot 

be established without further investigation. In the work presented herein, the cable element 

was modeled using a variable number of two-nodes tension-only axial elements. The number 
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of sub-elements within the span of the cable is decided by the user. 

2.2 Broken Conductor Analysis 

2.2.1 Experimental Studies of Broken Conductors 

Comellini [22] reported that the probability of occurrence of a broken conductor or 

insulator string in Italy and France was about 0.66* 10'^ per structure per year. Reference [22] 

used a reduced scale model to smdy longitudinal loads and base moments acting on the 

structures due to a broken conductor. In the study, static and dynamic longitudinal forces were 

calculated as a function of span, insulator length, and structure stiffness. Comellini [22] found 

that increasing the structure flexibility decreased the longitudinal forces exerted on the 

structure. Taking the probability of slippage of a conductor into consideration. Reference [22] 

calculated the risk of failure of a structure due to a broken conductor. 

Covers [4] smdied the problem of a broken conductor using a 150-kv transmission line 

that was retired from service near Amsterdam. This study was complemented with tests 

performed by Covers on a reduced scale model. The effect of the length and type of insulator, 

the span, the conductor initial tension, and the type of conductor material on the impact ratio 

of the longitudinal load due to a broken conductor were considered in that work. Covers [4] 

also studied the effect of the number of spans included in the model on the results. The study 

yielded relationships to calculate the impact ratio due to a broken conductor using the span-

to-sag ratio and the span to the insulator's length ratio. 

Peyrot [1] performed a series of broken conductor and broken insulator tests on a retired 

eight span 138-KV transmission line in Wisconsin. The effect of the broken conductor on 

adjacent spans was studied, and the dynamic longitudinal loads were measured. 

Mozer et al. [3] studied a model transmission line to investigate the broken conductor 

effect on transmission structures. In his work, Mozer and his colleagues, recorded the time 

history of the loads and moments due to a broken conductor. Response spectra curves to 

calculate the response factor of structures subjected to a broken conductor were also 

developed. Kempner et al. [23] carried out similar work. Experimental data from 
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References [1,3] was used to validate DYNTRN simulation capabilities, as presented in 

Chapter 4. 

2.2.2 Analytical Analysis of Broken Conductors 

Several analytical methods were presented to calculate the forces generated due to a 

broken conductor. A review of some of these methods was presented in [6]. 

Baenziger [6,24] developed a computer program, CABLE7, to calculate the dynamic 

response of a transmission line due to a broken conductor. The support stmctures were 

represented using spring elements. The program calculated the time history of the conductor 

tension and the insulator tension in the span adjacent to the break. Results were in good 

agreement with experimental data in the literature. In her work, Baenziger also performed a 

parametric study to investigate the effect of different line parameters on the impact factor due 

to a broken conductor. Parameters studied included the insulator length, the span length, the 

stiffness of the support structures, and the initial conductor tension. 

Siddiqui and Fleming [7] developed a broken conductor analysis software, BROKE, using 

the stiffness method. The cable element was approximated using a single two-nodes truss 

element to represent the entire length of the conductor. To account for the cable sag, a 

modified Young's modulus, E^q, was used in Reference [7], as follows: 

£ = 
2.5 

12T^ 

Where, 

E = modulus of elasticity of the cable, 

w = weight per unit length of the cable, 

A = cross sectional area of the cable, 

1 = span length, 

T = horizontal tension. 

The insulator was also approximated to eliminate potential numerical instabilities. 
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Reference [7] compared the results obtained by BROKE to experimental results reported by 

Mozer [3]. Loads measured at the arms of the structures fell within 10%. Moments at the base 

of the model structures were within 20%. 

23 Broken Insulator Analysis 

A broken insulator event refers to an event where the insulator breaks, followed by the 

free fall of the conductors. The conductors will then fall on the ground, hang on the bracing or 

the arm of the support structure, or simply hang in the air combining two spans into one. 

Investigation of transmission line failures documented in References [25,26], showed that a 

broken insulator was among the probable causes of cascade failures. The broken insulator 

phenomenon has received little attention from researchers, as compared to the event of a 

broken conductor. 

Comellini [22] studied the broken insulator phenomenon using a reduced scale model. 

Reference [22] stated that the longitudinal imbalance loads calculated in the final static 

position, whether hanging in the air or touching the ground, were very small. The peak 

dynamic transient forces were found negligible when the conductor was touching the ground, 

but reached relatively higher values in other cases. 

Peyrot and Goulois [27] presented an algorithm to analyze a cable partially lying on the 

ground. Wipf et al. [25] used the software developed by Peyrot et al. [27] to analyze a broken 

insulator event. In their study, it was found that 92% of the conductor's length was lying on 

the ground; therefore, the tension in the conductor was reduced considerably, producing a 

high imbalance longimdinal load. 

To the author's knowledge, no published work has presented a dynamic analysis of a 

broken insulator except the work presented in Reference [26]. Two spans of transmission line 

conductors where analyzed using ETADS [5]. A fuse element which automatically breaks at a 

specified time was used as the center insulator. The analysis simulated a real transmission line 

failure where the insulator broke, causing the conductors to fall and hang on the structure's 

cross bracing. The static analysis showed virtually no change in the conductor tension as it 

fell to its new position. Dynamic transient analysis, however, showed a decrease in tension of 
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more than 20% as the conductor fell. An increase of about 10% in the tension was also 

observed as the conductor vibrated about its new equilibrium position. 

2.4 Conductor Galloping 

Conductor galloping is defined in the transmission line reference book [28] as a low 

frequency, high amplitude, primarily vertical motion that is usually caused by a moderately 

strong steady wind acting on an asymmetrically iced conductor surface. Due to the high 

amplitude motion associated with galloping, flash overs as well as mechanical failure of 

conductors or insulators can occur. Any of these failures can lead to a cascade failure of 

several transmission support structures [25]. 

2.4.1 The Galloping Phenomena 

In 1932, Den Hartog [29] provided an explanation of the galloping phenomena and why it 

occurred. Reference [29] studied galloping on an elliptic cross-section and showed how the 

lift forces changing with the angle of attack of wind can reinforce the galloping motion. As 

the conductor moves vertically, the relative direction of the wind with respect to the 

conductor, i.e., the wind angle of attack, will change. This change will cause a corresponding 

change in lift forces that may reinforce or suppress the galloping motion depending on the 

conductor's cross-section and the initial angle of attack. The study concluded that instability 

would occur if the negative slope of the lift curve exceeded the damping action due to drag. 

Namely, 

where 

L = the lift force acting on the conductor cross section, 

D = the drag force acting on the conductor cross section, 

a = the wind angle of attack. 
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The effect of the conductor torsional motion in the initiation of galloping was later 

identified by Ruedy [30] and Cheers [31]. Edwards et al. [32] carried out an experimental 

investigation to study the galloping behavior of conductors by monitoring the translational 

and torsional amplitudes of several transmission lines. The study also recorded forces on an 

experimental test line specifically constructed for conductor galloping investigation. The test 

line was covered with a half-circular wooden airfoils to form a D-Section. Edwards et al. [32] 

concluded that the torsional motion of the conductor was important in initiating and 

sometimes sustaining galloping instability. The relation between the galloping frequency of 

the torsional and translation motions was also studied. Reference [32] found that in most 

cases of galloping, the frequency of the torsional and vertical vibrations were equal, although 

the natural frequencies of the respective degrees of freedom were not necessarily the same. 

Richardson et al. [33] investigated the effect of the wind angle of attack on the galloping 

stability of transmission lines by analyzing the dynamic behavior of a conductor using a 

lumped parameter system, as well as a continuous system. Reference [33] showed that the 

stability criteria for the continuous system can be solved using an equivalent lumped 

parameter system. Stability criteria for two and three degrees of freedom configurations, 

including horizontal, vertical, and torsion, were studied. An experimental verification using 

wind tunnel showed good correlation with the theoretical model with respect to the stability 

regions and galloping frequencies. The critical wind speed above which galloping occurred 

showed some discrepancies between the theoretical and experimental model. 

Nigol and Clarke [34] presented an experimental investigation that proved the importance 

of conductor torsion in initiating galloping. They found that ice usually built up on the upper 

quarter region of the conductor on the windward side. The orientation of ice caused the 

conductor to rotate, thus decreasing its effective torsional stiffness. Further reduction of the 

torsional stiffness resulted if the torsional motion was excited. Due to this reduction, the 

fundamental torsional frequency would decrease and reach a value comparable to the 

fundamental vertical frequency. If the value of the torsional frequency was equal to or a 

multiple of the vertical frequency, locking between the torsional and the vertical modes would 

occur; thus, galloping in the vertical mode could be initiated. This explanation was verified 
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using a test line consisting of three 800 ft. spans. The conductor was fitted with plastic 

crescent shapes and additional weight to simulate natural ice accumulation. The artificial ice 

decreased the torsional fundamental frequency ft-om the initial value of 2.4 Hz. to 0.8 Hz. The 

fundamental vertical frequency for the conductor was 0.28 Hz. The galloping motion was 

self excited at average wind speeds ranging from 12 to 25 mph. One, two, and three loop 

galloping cases were obtained by varying the orientation of the artificial ice. Further reduction 

of the torsional stiffness, and hence the torsional frequency, was believed to have occurred 

due to the aerodynamic moment caused by wind. 

Nigol and Buchan [35,36] studied the phenomena of galloping using simulated ice shapes. 

The purpose of the study was to investigate the mechanism of galloping and the effect of 

torsional motion. A series of wind tunnel tests was performed that included: 

1. Static tests to measure the aerodynamic coefficients of four ice shapes. 

2. Dynamic tests where the conductors were restrained to move in a pure vertical 

direction to study Den-Hartog galloping [29]. 

3. Dynamic tests to investigate self-excited pure torsional motions. 

4. Unrestrained tests to study the interaction between torsional and translational motions. 

The authors of the study [35,36] reported that no galloping in the pure vertical tests was 

generated, even in cases where static wind tunnel tests showed instability according to Den-

Hartog equation. The study also showed that galloping could occur in regions where the slope 

of the lift curve is positive if galloping was initiated due to the self-exciting torsional motion. 

Jones [37] examined the effect of the horizontal-vertical coupling of the conductor 

galloping motion by deriving the analytical equations of motion including vertical and 

horizontal degrees of freedom. Reference [37] documented that the coupling term between 

the horizontal (out-of-plane) and vertical equations did not allow a vertical motion to exist if 

the horizontal motion was set to zero. This result might explain why Nigol and Buchan [35] 

were unable to excite the vertical galloping motion when they restrained the horizontal 

motion. Furthermore, the study also found that an initial horizontal displacement or velocity 

could cause vertical galloping. It should be noted, however, that the results presented in the 
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reference [37] were concluded based only on the analytical equations listed in that reference. 

No experimental data was included to support these findings. 

Yu et al. [38,39] developed a three degrees-of-fireedom (DOF) model, which included the 

longimdinal, vertical, and torsional DOF. The references also compared several models with 

different combinations of DOF included. Models with three DOF, vertical DOF only, 

vertical-torsional DOF, and vertical-longitudinal DOF were compared. The vertical and 

vertical-longitudinal models produced results that were more conservative than the 3 DOF 

model. The results of the vertical-torsional model, however, were close to the 3 DOF model 

(see reference [39] for details). 

From the above review, one can conclude that torsional motion has a significant role in 

analyzing and modeling conductor galloping. For a more accurate and refined model, 

horizontal motion should be considered. 

2.4.2 Modeling Galloping using Analytical Methods 

Galloping is a self-excited motion that is caused by negative aerodynamic damping acting 

on the iced conductor. The aerodynamic forces acting in the vertical and horizontal directions 

across the conductor, as well as the aerodynamic torsional moments, depend on the wind 

angle of attack, which in turn is dependant on the velocity and torsional displacement of the 

moving conductor. These forces also depend on the ice shape coating the conductor as well as 

the direction and speed of wind. If the ice shape as well as wind speed and direction is 

assumed constant, aerodynamic forces will be the only variable. The aerodynamic forces will 

change according to the changing value of the displacement and velocity of the conductor. 

Therefore, the general equations of motion describing galloping can be written as: 

m m  ̂  [ C \ { U ]  ^  [ K ] { U }  =  {F({C/},{^})} 2.6 

Where [M], [C], and [K] are the mass matrix, the damping matrix, and the stiffness 

matrix, respectively. {U}, {0}, and {U} are the acceleration vector, the velocity vector, and 

the displacement vector, respectively. {F({tl},{U})} is the aerodynamic force vector acting 

on the conductor including drag, lift, and moment. The above equation is a nonlinear equation 
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that can be integrated over time. 

Desai et. al. [40] developed a finite element model to represent several spans of a 

transmission line. Reference [40] used a three-node cable element with four DOF at each 

node: three translational and one torsional. The support structures were considered rigid. The 

insulators were modeled using equivalent springs. A finite difference time integration scheme 

was used to solve Equation 2.6. Through this analysis, a time history of the vibrating cable 

was generated. The method was compared to the experimental work performed by Edwards 

[32] and Stumpf [41]. Good correlation was found between the analytical and experimental 

model. An inherent problem with the time integration method was the high computational 

effort. Reference [40] reported that galloping was simulated for more than two thousand 

seconds in order to reach a periodic response. Estimating the aerodynamic forces acting on 

the galloping conductor is another difficulty associated with the method listed in Reference 

[40], because the ice shape coating the conductor is usually not known. 

2.4.2.1 Solving the Galloping Problem 

Several methods were introduced to solve the nonlinear galloping equations using 

nonlinear analysis techniques, such as the perturbation theory. Blevins and Iwan [42] solved a 

two degrees-of-freedom (torsional and vertical) lumped parameter model using asymptotic 

techniques. Egbert [43] used the describing function method to solve one degree of freedom 

vertical galloping. Byun and Egbert [44] refined the describing function method to include 

torsional motion. Richardson [45,46] used energy methods to solve the galloping problem. 

Desai et al. [47] used averaging methods to solve the same problem presented by Blevins and 

Iwan [42]. Yu, Desai, Shah, and Popelwell [38,39] solved a three DOF lumped model using 

averaging techniques. The model was built by defining the assumed displacement function of 

the cable to match one of the mode shapes, thus developing the mass, stiffness, and damping 

matrices associated with the three DOF lumped element. Adjacent spans were modeled using 

springs. Only one mode shape could be represented at a time, i.e., the mode shape that needed 

to be investigated. The nonlinear equations were solved using perturbation analysis and 

averaging techniques. Results were compared to the experimental work by Edwards and 

Madeyski [32], and Nigol and Clarke [34], and double checked using time integration. 
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2.4.2.2 Estimating the Aerodynamic Forces 

Nigol and Buchan [35] tried to simulate natural ice occurrences by spraying different air-

water mixtures on a conductor placed in a walk-in refrigerator. Plastic replicas of the most 

common ice formations were made and tested in a wind tunnel to develop a relationship 

between the aerodynamic coefficient used to calculate the aerodjoiamic forces and the wind 

angle of attack. 

Hunt and Richards [48] used a lift coefficient changing from 0.6 to -0.6 at zero-angle of 

attack, and a constant drag coefficient of 1.0, with the assumption that these would cause 

worst case galloping. In their work, an energy balance method was used to obtain the vertical 

galloping peak-to-peak amplimde, which was estimated to be: 

Y= 0.26— 2.7 max y ^ 

Where, is the wind speed and f is the natural frequency of the conductor. 

In the equation presented by Hunt, the galloping amplitude is directly proportional to 

wind speed, which is usually true for low wind speeds. Reference [48] cautioned, however, 

that when the value of the wind speed exceeds a certain value, the maximum galloping 

amplimde will start to decrease. Baenziger et al. [49] modified the equation presented by 

Hunt and Richard to include a limit on the wind speed beyond which the galloping amplitude 

will not increase. The modified equation presented in Reference [49] is as follows: 

0.26V V 

max y y 
2.8 

33t/ ^>l25d max y 

Where is the peak-to-peak galloping amplimde and d is the conductor's diameter. 

2.4.3 Modeling Galloping using Statistical Methods 

A galloping guideline using galloping observations was established by Davison [50] who 

developed galloping ellipses which were used widely for design of clearances in transmission 
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lines. Davidson's model has been refined and modified by later researchers [28]. 

Rawlins [51] used the galloping observations from numerous reports to study the 

correlation between different parameters of a transmission line and conductor galloping. The 

galloping data covered a broad range of lines with different design, conductor sizes and 

geographical areas. One objective of the study was to differentiate between the lines that 

gallop from these that do not gallop. Another objective was to find a correlation between the 

line parameters and the number of galloping loops. The final objective was to estimate the 

galloping amplitude based on the line parameters. Wind speed was eliminated from the study. 

Rawlins [51] found that one-loop galloping was mostly dominant, followed by two loops, and 

then three loops, and that higher number of loops occurred in dead-end spans more than in 

suspension spans. Reference [51] also found that the ratio of the conductor tension, T, to the 

conductor weight per unit length, w, can be successfully used to distinguish between 

galloping and non-galloping cases. Higher values of T/w didn't favor galloping. Rawlins [51] 

also developed a chart to estimate galloping expected maximum amplitudes (see Figure 2.2). 

The chart calculates the value Yp^/S based on the catenary parameter, M', and T/w. M' is 

expressed as: 

10.67 US' for suspension spans 
M'= "21.3 D^/IS~ for semi-suspension spans 

54.2*10^ IS* for deadend spans 

Where, D is the sag in meters, I is the insulator length in meters and S is the span length 

in meters. is the peak-to-peak galloping amplitude. 

Although Rawlins model was useful in establishing realistic guidelines for estimating 

galloping amplimdes, in the author's opinion, a larger sample of data, and including weather 

conditions in the model, would yield more accurate results. In addition, the data used to 

develop the model was based on observations, and therefore one may argue its accuracy. 



www.manaraa.com

19 

<ooo 

Figure 2.2 Galloping Amplitude - Statistical Methods [51] 

2.4.4 Loads Generated by Galloping 

Dynamic loads generated by galloping were smdied by Krishnasamy [52], who reported a 

series of measurements on three sites in southern Ontario. Vertical loads as high as twice the 

conductor weight was reported. Dynamic forces generated due to galloping were also studied 

by McConnell [2]. The objective of his work was to study the forces generated by galloping 

on transmission structures, and to investigate the effect of a proposed energy absorber device 

to be used in controlling galloping and reducing the impact of galloping forces on 

transmission structures. Galloping forces were measured using force transducers installed 

between the structure and the insulator. The maximum dynamic force reported by McConnell 

[2] was about 15% higher than the force due to static loads. 

Baenziger et al. [49] developed an analytical model for calculating additional conductor 

tension caused by galloping. A simplified equation was developed by assuming the mode 

shape of the conductor to be a simple harmonic shape. To utilize the model, one needs to 

provide the galloping amplitude as an input to calculate the dynamic galloping forces. The 

analytical model was checked versus the results of a wind tunnel experiment. The amplimdes 

used in the analytical model were calculated using the equation developed by Hunt and 

Richard [48] (see Equation 2.7). Not all of the presented experimental results were very close 

to the results calculated using the analytical model. Discrepancies ranging from 1.4 to 35.9 
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percent were reported. Reference [49] also tested the analytical model using field data 

reported by Krishnasamy [52]. Variation between the analytical and field results were also 

reported. Maximum variation reported was 30.1 percent. A detailed presentation of the 

analytical model can be found in [53]. 

Similar work was done by Wu [54], who developed an analytical model to calculate the 

conductor end forces caused by a galloping conductor using numerical analysis, and 

compared it with experimental results. In the experimental model, a support excitation was 

used to generate galloping in lieu of a wind timnel test. A variation of 20% between the 

analytical and experimental model was reported. 

2.5 Object Oriented Programming 

Schildt [55] defines Object Oriented Programming (OOP) as a new and more efficient 

way of programming and manipulating complex data. When programming in an object 

oriented fashion, the programmer decomposes the problem into subgroups of code and data 

related to the group. These subgroups are translated into self-contained units called objects. 

Objects contain data pertaining to the object, the code to internally manipulate the data, and 

the code that interfaces the object with other objects in the program. Objects can be thought 

of as variables of new types defined by the user. 

2.5.1 Benefits of Object Oriented Programming 

The major benefit of using OOP in a finite element program is that the code produced is 

more readable and easy to maintain. Filho et al. [56] have expressed that the revolution in 

hardware and software in recent years has made software design more complex; therefore, a 

better way of programming Finite Element Methods (FEM) was needed. Arruda et al. [57] 

also explained the benefits of using OOP for the development of a structural analysis system 

under a graphical environment, specifically discussing the C++ language under Microsoft 

windows. Miller [58] discussed the benefits of OOP in integrating the traditional pre

processors and post-processors to the main module of a structural analysis or design program. 
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thus making the program more interactive and efBcient. Reference [58] also discussed the use 

of OOP to encourage concurrent and distributed processing, through which different people 

involved in the creation of a structure can interact and communicate. Miller also explained 

the attractiveness of using object-oriented databases to provide persistent storage for 

engineering systems. Gajewski [59] discussed the need for a new programming paradigm, 

such as OOP, to replace the "traditional waterfall algorithm-driven structured programming 

approach," and stated that the traditional system of progranmiing, and in the majority of cases 

Fortran as a programming language, is no longer adequate for the increasing size and 

complexity of finite element programs. Zimmermann et al. [60] discussed specific benefits of 

OOP, and supported their discussion with examples. These benefits included: 

1. Auto-description capability: the ability of the code to describe itself without additional 

comments. 

2. Non-sequential aspect of procedures: viewing the code as a collection of objects 

responding independently to messages without a constraint to a prescribed sequence 

of operations. 

3. Independent testing capabilities: because objects are developed independently, it is 

possible to test the internal methods of any object independent of other objects. 

4. Automatic storage management capability. 

2.5.2 Using Object Oriented Programming in Structural Analysis Software 

Although the OOP popularity in the software industry has exponentially increased in the 

last decade, using OOP for analyzing engineering problems, and specifically structural 

engineering problems, has been slower. Gajewski [59] attributed the reluctance of engineers 

to move to the OOP technology to three main reasons: 

1. The presence of old systems programmed in a structured traditional way and does not 

mix well with OOP design. 

2. The presence of tools and programs that does not ftilly support OOP. 

3. The investment required to leam OOP. 

Despite the factors listed above, OOP has recently picked up momentum among structural 
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engineering researchers. Forde et al. [61] presented one of the first attempts to produce an 

object-oriented finite element program. Reference [61] explained the object oriented concepts 

and presented the prototypes for the objects used in the development of an isoparametric two-

dimensional finite element program. Reference [61] also compared the object-oriented 

development to a traditional procedural development to demonstrate the advantage of OOP in 

such issues as development time, code maintenance, and testing. Scholz [62] presented the 

object-oriented development of a finite element program using the C++ language. The 

program is capable of solving two, three, and four nodes beam elements based on theory of 

Timoshenko [63,64]. The reference highlighted the benefits of OOP in improving the 

readability of programming code. Zimmermann et al. [60,65,66] discussed the theory of 

object-oriented design, and presented examples to compare object-oriented programs to ones 

implemented in the traditional procedural approach. References [60,65,66] investigated the 

advantage of OOP on such issues as code readability, maintainability, ease of programming 

and debugging, and extendibility. Speed of execution of two finite element programs was also 

compared, one developed in Fortran, and the other developed in C++ using OOP. The finite 

element programs consisted of two phases: the assembly phase where the stiffness matrix was 

computed, and the solution phase where the matrix was solved. In the assembly phase, the 

procedural implementation using Fortran was about 35% faster than the object oriented 

implementation using C-H-. In the solution phase, however, the Fortran speed advantage 

disappeared. This lag in speed was attributed to the higher level of abstraction associated with 

the C-H- implementation. 

Yu et al. [67] developed an object-oriented Enhanced Entity Relationship (EER) data 

model which relied on an object-oriented class library to perform the basic operations of finite 

element analysis. The model included Database Management System (DBMS) techniques. 

The model was used to perform inter-laminar stress analysis of composite structures. Ju et al. 

[68] demonstrated the use of object-oriented techniques to include sub-structuring in a finite 

element program. Using this technique, multi-level sub-strucmring was achieved. Miki et al. 

[69] proposed an object oriented approach to perform large displacement analysis on truss 

structures using the relaxation method. The object oriented design was chosen in 



www.manaraa.com

23 

Reference [69] to give a high level of modularity so that the program can be easily extended. 

2.5.3 Efficiency Issues in Object Oriented Programs 

Object oriented programming uses a high level of abstraction to achieve a highly modular 

and readable code. This high level of abstraction, however, produces a code that is slower 

than that produced by a traditional procedural approach. Miller [58] affirmed that there was a 

speed penalty associated with OOP, but considered it modest and unimportant. Miller 

reported a speed penalty in one case in the order of 10-15%, but stated that the increasingly 

interactive programming environments would change the perception and need of speed as 

known in the batch processing modes. Forde et al. [61] stated that the decrease in execution 

speed due to OOP is not significant, and argued that in some cases the object oriented design 

might produce faster applications. Reference [61] added that expensive computational 

procedures could always be programmed in a native procedural language and connected to the 

object oriented system to improve execution speed. Devloo [70] discussed efficiency issues in 

object-oriented design, and stated that the overuse of the object oriented principles might 

yield a program that is very inefficient with respect to execution time. Reference [70] also 

showed that an object-oriented program can be comparable to a procedural program in speed 

if the former was written for maximum efficiency. Devloo discussed how such issues as 

dynamic memory allocation, functions returning objects by value, overuse of function calls, 

and using objects out of context could affect the execution efficiency of the program. 
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CHAPTER 3 - DESIGN OF THE SIMULATION 

SOFTWARE 

3.1 Overview of Object Oriented Programming 

Traditionally, programs were focused on procedures which manipulated global data, or 

data defined in the main program, and passed to procedures as argimients. Object Oriented 

Programming (OOP) is a software development philosophy which packages related data and 

functions in entities called objects. In an object-oriented program, any object should belong 

to an object type, or class. An object class defines the type of data to be stored in the object, 

the functions which manipulate the stored data, and the functions which provide the interface 

with other objects. Data and functions defined in a class might be private, i.e., not accessible 

by other objects, or public, i.e., can be accessed by other objects. 

In OOP, after classes are specified, objects can be declared in the main program using the 

defined classes the same way as other variables are declared. By using objects, a more 

concise, readable, and modular code can be developed. This can be achieved through three 

main properties of objects: encapsulation, inheritance, and polymorphism. 

Encapsulation is the property of hiding some of the implementation details of an object 

from other objects in the program. In this way, the internal implementation of an object can 

be changed without affecting other objects in the program. This property is important to 

produce a modular code that is easy to modify. For example, one can change the method by 

which an element calculates its stifftiess matrix without changing other parts of the program. 

By arranging objects in a hierarchal order, objects can inherit data and code defined for 

other objects. A beam element and a truss element, for example, possess properties and 

behaviors that pertain to both of them. By defining an element object that includes the data 

and implementation needed for most structural elements, one can then inherit different types 

of elements from the main element object. This will produce a more concise and readable 

code. 



www.manaraa.com

25 

Polymorphism is a property through which a certain procedure can have more than one 

implementation, depending on the types of the arguments supplied to the procedure. A 

stiffness procedure, for example, can have different implementations depending on the type 

of element calling the procedure, allowing different elements to calculate their stiffness 

matrices using different methods, such as the direct stiffness or the finite element approach. 

For more discussion about OOP see references [55,71]. 

3.2 Object Oriented Design of DYNTRN 

The simulation software, DYNTRN, consists of a number of objects that communicate 

with each other to accomplish the different tasks required by the program. Objects can be 

considered as the building blocks used to construct the overall program. Starting with objects 

that represent vectors and matrices, one can build more complex objects such as nodes and 

elements. These objects are combined to build the main object which represents the structure 

under consideration. 

All the objects, used in the program inherit from an object called CObject. CObject is 

provided by the Visual C-H- compiler [72], and gives the inheriting objects access to many 

services, such as input/output and error checking capabilities. In the next sections different 

object classes used in the program will be presented, and the relationship between these 

object classes will be discussed. A complete listing of the class prototypes used in DYNTRN 

is presented in Appendix A. 

3.2.1 Basic Building Blocks 

Vectors and matrices are the basic building blocks for most structural analysis programs. 

Three object classes, VECTOR, MATRIX, and BMATRDC, were developed to represent 

vectors, matrices, and banded matrices respectively. Routines to perform matrix and vector 

operations, such as addition, subtraction, multiplication, matrix transpose, and finding the 

norm of a matrix or a vector, were included in the three object classes. Routines for 

decomposition and back-substitution were also developed. An object class which represents 
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sparse square matrices, SSMATRDC, was also developed. SSMATRIX is discussed in details 

in Section 3.2.9. An object class representing geometric vectors, GVECTOR, was also 

developed to be used in modeling coordinates, forces, and displacements. GVECTOR 

contains a VECTOR object used to represent the x, y, and z components of a 3-D geometric 

vector. 

3.2.2 Coordinate System Object 

A coordinate system object class, CSYS, was constructed as shown in Figure 3.1. It 

contains four GVECTOR objects to represent the origin of the coordinate system, and the 

three axes, X, Y, and Z. CSYS also contains a transformation matrix, T, used to transform 

geometric vectors from the coordinate system represented by the CSYS object to the global 

coordinate system, and vice versa. T can be written as: 

% P. Yx 

[r]= TTJ. Pk 

Pz 

Where, a, p, and y are the direction cosines of a geometric vector with respect to the 

global X, Y and Z axes, respectively. The subscripts, X, Y and Z refer to the geometric 

vectors representing the X, Y, and Z axes of the CSYS object, respectively. 

A geometric vector can be transferred from the coordinates represented by the CSYS 

object to the global coordinates, and vice versa as follows: 

Global ~ 

\T\ {^Global 

Where, 

{Vjoiobai is a 3-D geometric vector in the global coordinate system, 

{V}csys is the same 3-D geometric vector transformed to the coordinate system 

represented by the CSYS object. 
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CSYS Object Class 

Coordinate system 
transformatin matrix 

Figure 3.1 - Coordinate System Object Class 

3.23 Material and Section Properties Object Classes 

The material properties object class, MATERIAL, and the section properties object class, 

ELPROP, were constructed using an array of real values. Every material or section property 

is referenced using a specific integer, which is the index of the array element where the 

property is stored. By using the C language "#define" statement, integers could be assigned to 

names, thus providing an elegant way for retrieving properties. If "Section", for example, is 

an object of type ELPROP, one can retrieve the area property by writing the statement 

" A = Section.GetVal(AREA);" instead of the statement "A = Section.GetVal(O);" where the 

name "AREA" is assigned the integer zero using the statement "#define AREA 0". In this 

way, the developed code is more readable. 

3.2.4 Force and Displacement Object Classes 

Forces, moments, displacements, and rotations are represented by the FORCE, 

MOMENT, DISP, and ROT AT object classes respectively, as shown in Figure 3.2. The 

FORCE and MOMENT classes inherit from the GVECTOR class, and do not add any new 

functions to it. Therefore, FORCE and MOMENT classes are practically identical to the 

GVECTOR class. They were developed, however, for future extendibility, and to improve the 

readability of the code. The DISP object class also inherits the GVECTOR class, but adds to 
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Variables 

Functions 

EQRCELQbjeet! MOMENT Object DISP Object RQIAXiJlyiectl 

Figure 3.2 - Force and Displacement Classess 

it an array of boolean values to indicate whether the degrees of freedom represented by the 

DISP object are restrained or not. The ROTAT class is identical to the DISP class, with 

additional capabilities to handle large rotations in analyses with geometric nonlinearity. 

3.2.5 Loading Object Classes 

Figure 3.3 shows the main structure of the nodal load history object class, NHLOAD, and 

the element load history object class, ELHLOAD. The load history objects contain variables 

and fimctions for defining the time scale, interpolating loads at any time value, and 

implementing input/output operations. The class contains a time scale array, which contains a 

series of time values. For each time value, a corresponding load object is defined by the user. 

If no load object is defined for the time value, a load value is interpolated, as shown in 

Figure 3.3. Two classes of load objects are defined, nodal load objects, NLOAD, or element 

load objects, ELLOAD. Each is used with the respective load history object. 
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Load History Object (NEQl/OAD and ELHLOAD) 

TimeScale 

Defined Load Object 

Figure 3.3 - Load History Class 

3.2.6 Node Object Class 

The node object class, NODE, is designed to contain the information related to the node, 

including its original coordinates, final coordinates, displacements, rotations, accelerations, 

velocities, internal forces, and internal moments. It also contains other variables to store 

initial conditions for a dynamic analysis. In addition, it stores the name and address of the 

nodal load history object, NHLOAD, which defines the nodal load history for the node. 

Functions used for input/output, updating the node after a solution, file storage, and mapping 

the node to its position in the global structure matrices are also defined in the NODE object 

class. 

3.2.7 Element Object Class 

The element object class, ELEMENT, includes fiinctions for calculating the element 

stiffness matrix and transferring it to the global axes, procedures for calculating the internal 

sttesses in the element, and other functions related to input/output operations, such as plotting 

the deformed shape of the element. In order to perform the tasks listed above, the ELEMENT 

object stores the following information: 
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• Name and address of the node objects attached to the element. 

• Name and address of the element load history object applied to the element. 

• Name and address of the section and material property objects. 

The ELEMENT object class also contains other variables to store the element original 

length, its temperature, and its local coordinate system. 

In this work, several element types were inherited from the main element class, 

ELEMENT (see Figure 3.4). The BEAM object class represents a two-node beam element, 

the TRUSS class represents an axial two-node element, the RSPRING class represents a 

linear spring attached to one node along one of the global axes, and the CABLE object class 

represents an element with a variable number of internal nodes with no flexural stiffness. The 

CABLE element implements the principles of sub-structuring and matrix condensation to 

eliminate the degrees-of-freedom associated with the internal nodes. The condensation 

process is discussed in detail in Section 3.3.4. CABLE2 is a cable element that inherits from 

CABLE. CABLE2 uses a variable number of axial two-nodes tension-only elements along 

the span of the cable. The number of cable sub-elements used in CABLE2 is specified by the 

user. Inheriting the CABLE2 object class from the CABLE object class allowed for future 

extensions. In this way, cable object classes with alternative types of sub-elements can be 

defined and inherited from the CABLE class, thus making use of the matrix condensation 

capabilities present in the CABLE class. For more information about the stiffness matrices of 

different types of elements see Reference [73]. 

Although the ELEMENT class contains the basic information needed by the element to 

calculate its stiffness matrix and perform other tasks, most of the implementation details, 

such as stiffness matrix calculation, are performed by the inheriting objects. For this reason, 

the ELEMENT object class was defined as an abstract class, i.e., an object of type 

ELEMENT can never be used directly in the program. Instead, an object class inheriting from 

the ELEMENT class, such as a BEAM or a TRUSS class, should always be used. 

Although the ELEMENT class cannot be used directiy, it is very usefiil to the program in 

two ways. First, it reduces the code size, because it defines variables and functions that are 

common to all elements, such as the section properties and material properties. Secondly, it 
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ELEMENT 

BEAM CABLE TRUSS RSPRING 

1 1 
CABLE2 Future Extension 

Figure 3.4 - The ELEMENT Class and its Inheritors 

helps in producing a simpler and more versatile interface between the program and the 

different element objects present in the structure, as explained in Section 3.2.8. 

3.2.8 CDyntrnDoc Object Class 

CDyntmDoc is the main object class which acts as the container and organizer of other 

objects. It contains information about nodes, elements, material and section properties, and 

nodal and element loads existing in the structure. It keeps track of this information using a 

list class called "CMapStringToOb", which is provided by the Visual C++ [72] compiler, and 

is used to map a number of objects to corresponding character strings. In other words, it 

assigns every object a name, and stores the objects in a linked list. In this way, every object, 

a node for example, will have a name assigned to it. "CMapStringToOb" object can iterate 

sequentially over the list or can look up a certain object by knowing its name, thus allowing 

search operations to be performed on the program database. 

Figure 3.5 shows the lists included in CDyntmDoc. It contains a list of nodal load history 

objects, a list of element load history objects, a list of material property objects, a list of 

section property objects, a list of node objects, and a list of element objects. Figure 3.5 also 

shows the relation between the object lists within the CDyntmDoc object. A node object 

contains the name and address of a nodal load history object. Similarly, each element object 

contains pointers to an element load history object, a material property object, a section 

property object, and a number of node objects. CDyntmDoc also contains other objects and 
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variables for performing other services, such as data input, data output, controlling solution 

parameters, performing problem solution, and displaying graphics. 

CDyntmDoc acts as the main interface of the program. It receives messages from the user 

or other objects in the program to perform certain operations, such as input, output, or a 

solution operation. Then, it transfers the message to the appropriate object stored in one the 

lists to perform this operation. For example, in the solution process, the CDyntmDoc object 

receives a message to assemble the stiffness matrix. Consequently, it iterates through the list 

of element objects, sending a message for each element to form its own stiffness matrix and 

place it in the global stiffness matrix. 

Element 2 

Eoad0^;; 

Figure 3.5 - Main Container Object Class, "CDyntmDoc" 

The element list contained in CDyntmDoc is recognized by the program as a list of 

ELEMENT objects; however, the list contains no ELEMENT objects. Instead, it contains 

objects inherited firom the ELEMENT class, such as BEAM or TRUSS objects. This is very 

useful because the container object, CDyntmDoc, makes no assumptions regarding the type 

of elements included in the list, and therefore the interface becomes more versatile. 

Although the container object doesn't recognize the inheritor class of any element, it has 

the ability of calling the routines belonging to the inheritor by using special types of functions 

called virtual functions. A virtual function is defined in both parent and child classes. When a 

parent class is used to call a virtual function, the function belonging to the actual class of the 
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object is used instead. Figure 3.6 shows an example explaining virtual functions. In the 

figure, el and e2 are pointer variables, both declared as pointers to class ELEMENT, where a 

pointer in software terminology is a variable that contains the memory address of another 

variable or object. In the example, el is assigned the address of an object created as a BEAM 

object, and e2 is assigned the address of an object created as a TRUSS object. This 

assignment is possible because both BEAM and TRUSS are inherited from the ELEMENT 

class. Although the program recognizes both el and e2 as pointers to the ELEMENT class, 

when the virtual function " CalculateStiffhessQ" is called by the pointer el, the BEAM 

version is used, and when it is invoked through e2, the TRUSS version is used instead. In 

both cases, the ELEMENT version of the fianction is not used. 

3.2.9 Sparse Matrix Object Class 

The global stiffness matrix of a structural system is usually sparse, i.e., most of the 

elements of the matrix are zeros. Therefore, it is not efficient to store all the elements of the 

matrix. Many programs use banded matrices to reduce the space required for storage and the 

time needed for the solution. Banded matrices, however, still waste space by requiring 

storage of zero elements within the band width. Some routines have also been developed to 

automatically renumber the nodes to achieve optimum storage and speed. Other methods 

have also been developed to arrange the matrix information in a certain way to eliminate the 

ELEMENT *el, *e2; 

el = new(BEAM); 

e2 = new(TRUSS); 

el-> CalculateStiffnessO; 

e2-> CalculateStiffnessO; 

el and e2 declared pointers to ELEMENT 

el assigned a BEAM object address 

e2 assigned a TRUSS object address 

The BEAM function is invoked 

The TRUSS function is invoked 

Figure 3.6 Example of Virtual Functions 
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storage of zeros [74]. 

A new method is developed here to represent square sparse matrices using object-oriented 

design. The method uses pointers and linked lists to eliminate the storage of zeros. The 

developed sparse matrix class, SSMATRDC, doesn't store any value that falls below a certain 

threshold. Unlike banded matrices, the way nodes are numbered doesn't affect the storage 

efficiency of the SSMATRDC object. 

As shown in Figure 3.7 , SSMATRDC class is based on two objects that act as the 

building blocks for the matrix. The first object is the ROWHEAD object, and the second 

object is the RELEM object. SSMATRDC contains a variable to store the number of rows in 

the matrix, which is equal to the total number of degrees of freedom for the structure. 

SSMATRDC also contains an array of ROWHEAD objects. The number of ROWHEAD 

objects in the array is equal to the number of rows in the matrix. Therefore, each ROWHEAD 

object corresponds to a row in the sparse matrix. Each ROWHEAD object stores a number 

which corresponds to the number of non-zero values in the row represented by this object. It 

also points to the first RELEM object in the row. Each RELEM object points to the RELEM 

preceding it, and the one following it, as shown in Figure 3.7. Each RELEM also stores two 

values: the column number it is representing, and the actual value of the matrix element. In 

every row, the first and last RELEM object store no values and act as the head and tail of the 

row respectively. The number of intermediate RELEM objects in any row corresponds to the 

number of non-zero elements in that row, and should be equal to the number stored in the 

ROWHEAD object. 

Several routines are implemented to perform different matrix operations for SSMATRDC 

objects, including matrix decomposition and back substimtion. During the operation of these 

routines, an RELEM object is eliminated if the absolute of its stored value falls below the 

zero threshold. Similarly, a new RELEM object is inserted for zero elements that acquire a 

non-zero value during these operations. The new object oriented implementation of the 

sparse matrix saves computer space by reducing the number of values stored. It also increases 

the speed of matrix operations by enhancing the process of iteration through the matrix. 

Because every element in the row points to the element following it, forward iteration 
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NRows 

Nelem i 

; Nelem 

Nelem 

Nelem 
First Last 

Val ! Col i I Val Col 1 i Val Col ! Val Col 

Prev Nex^i^j*Prev Nex^i^T*Prev Nex^j^^Prev Next 

Val Col j i Val 1 i Col 1 Val 1 Col ! ! Val Col 

j Prev Nex^j^^Prev Nex^l^^Prev Nexy^^Prev Next 

ROWHEAD Object RELEM Object 

^ Val Col Val Col Val Col Val Col 

Prev I Nex^l^^Prevj Nex^j^r*Prev j Nexy^^*Prev Next 

Figure 3.7 Square Sparse Matrix Object (SSMATRDQ 

through the row will be very fast. Backward iteration is also improved by using pointers to 

preceding elements. This improvement in the performance, however, comes at the expense of 

more storage requirements, since two pointers have to be stored for every non-zero value in 

the matrix. 

3.3 Analysis Procedure 

3.3.1 Dynamic Analysis 

Due to the highly nonlinear nature of transmission line problems, the step-by-step 

integration method was chosen for implementation in the dynamic program. Since this 

analysis is implemented in the time domain, a wide range of loading histories, such as 

galloping, can easily be applied to the structures. Figure 3.8 shows the force-deformation 

relation for a large deformation dynamic analysis. As the solution proceeds from Point A, at 

time t„, to Point B, at time tn+„ the incremental dynamic equilibrium equation of the 

structural system for the time step (t„+i -1^) can be written as: 
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3.3 

Where, 

[M] = mass matrix, 

[C] = damping matrix, 

[K] = tangential stiffness matrix, 

{AF}„+,= incremental extemal force vector, 

{AU}„^.,= incremental acceleration vector, 

{AI!I}„^.,= incremental velocity vector, 

{AU}„+,= incremental displacement vector. 

Figure 3.8 Dynamic Solution of Large Deformation Problems 

There are several numerical techniques that can be used to solve Equation 3.1 [63]. 

Among these methods is the Newmark technique. Assuming that the displacement, velocity 

and acceleration at the beginning of the time step, n, are known, the Newmark technique 

calculates the incremental acceleration and velocity at the end of the time step, n+1, as: 

Solution at Time, t^, 

Solution at Time, t„ 

U. 
Deformation, U 
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3.4 

33 

ao to aj are defined in Appendix B as functions of two parameters, a and 6. The 

parameters, a and 6, can be used to adjust the stability and accuracy of the integration 

method. Substimting Equations 3.4 and 3.5 in the general equation of motion the following 

equation is derived: 

Since the acceleration, {U}„, and velocity, {Cln, at the beginning of die time step are 

known. Equation 3.6 can be solved for the incremental displacement {Au}„^.,. The 

incremental displacement vector can then be substituted in Equation 3.4 to calculate the 

incremental acceleration, and in Equation 3.5 to calculate the incremental velocity. The 

incremental values are used to update the displacements, accelerations, and velocities at the 

end of the time step, as follows: 

The values of the displacement, velocity, and acceleration at the end of the time step are 

used as initial values for the time step to follow, and the solution proceeds. 

3.3.2 Large Deformation Analysis (Geometric Nonlinearity) 

In some structural analysis problems, the deformation (displacements or rotations) of the 

structural element is large enough, compared to the original dimensions of the element, that 

the behavior of the element in the deflected position is considerably different from its original 

[ U ]  

3.7 



www.manaraa.com

38 

behavior. In these cases a nonlinear large deformation analysis is required. The large 

deformation dynamic analysis method using the Full-Newton-Raphson technique, and the 

updated Lagrangian formulation [75] as implemented in DYNTRN, is outlined below: 

1. Starting with known values for {U}„, {CF}„, and {U}„, {Cr}„+i, and {U}„^, can 

be calculated as described in Section 3.3.1. 

2. The calculated deflection vector, can be written as: 

{ U ^  , U y , U 2 , R x , R r ^  3 . 8  

Where U^, Uy, and are the displacements in the X, Y, and Z directions, and R,, Ry, 

and Rz are the rotations about the global axes, X, Y, and Z. Using the calculated 

displacements, the geometry of the structural element is updated, as shown in 

Figure 3.9, and the element coordinate system is updated. 

3. The rotations, Rx, Ry, and R^ are then transformed to the displaced element coordinate 

system as Rxe, Rye' ^^ze- Transferring large rotations form one coordinate system to 

another is not performed by simply multiplying the rotations by the transformation 

matrix of the updated coordinate system. The procedure used to transfer a rotation 

vector from one coordinate system to another is listed in Appendix C. More 

information about this procedure can be found in [76-78]. 

4. The axial deformation, {Uxe}. of the element is next calculated as the difference 

between the updated and original length of the element. In the updated coordinate 

system, Uye and Uzg will be zero. 

5. The internal forces in the displaced coordinate system are calculated as: 

(Fei) = [Ke] (Ue), where [Kg] is the element tangent stifftiess matrix in the displaced 

coordinate system, {11^}'= {Uxe,0,0,Rxe,Rye>Rze}-

6. The internal forces are then transformed to the global coordinate system, and the 

residual forces, {FR} calculated as: 

{ F ^ } =  {F^} -  { F , }  -  [ M ] { U } „ ^ ,  -  3.9 
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Where {Fg} and {F,} are the applied force vector, and the internal force vector, 

respectively, in the global coordinate system. 

7. If the L2 norm of the residual force vector {FR} is below the user specified tolerance 

value, the solution is then converged, and proceeds to the next time step. Otherwise, an 

updated tangential stiffness matrix, [K], is calculated for the structure, and the 

deformation vector, {U}„+,, updated for the next iteration, i+1, using the relation; 

where, 
3.10 

8. An updated incremental displacement vector, {AU'*'}„+,, is calculated as: 

3.11 

The updated acceleration, and velocity vectors, are then calculated, using 

Equations 3.2, 3.3 and 3.5, and the solution proceeds to Step 2. The procedure 

continues until the solution converges as mentioned in Step 7. 

z k 
P Original Shape y 

/ -f—•X 

New Ref. Line 

Displaced Shape 

Figure 3.9- Large Deformation Analysis 
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The above large deformation analysis is implemented in the solution routine performed 

within the CDyntmDoc object as presented in Figure 3.10. First, the stifftiess matrix is 

assembled, then the restraint degrees of freedom are eliminated. Next, the incremental joint 

loads' vector, element loads' vector and restraining forces' vector are formed. The structural 

equations are then solved, the geometry is updated, and the residual forces are calculated. Tlie 

residual forces' vector is used to check if a converged solution is achieved. 

Figure 3.10 - Nonlinear Solution Procedure 
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For each step of the solution process, all the information pertaining to the solution is 

stored in the element and node lists contained in the CDyntmDoc object. In this way the 

solution process can be stopped at any time, a parameter, such as the applied load, the 

material properties, or the cross-sectional properties, can be changed, and then the solution 

resumed. The user can also remove a component from the program database, such as a cable 

element, and then resume the analysis. This feature makes a broken component analysis, 

such as a broken conductor analysis, very simple. 

3.3.3 Matrix Condensation and Sub-Structuring 

Matrix condensation in linear static analysis is a well-known concept discussed in most 

structural analysis text books. Little work, however, has been done to extend the method to 

dynamic analysis. Guyan [79] proposed a method to evaluate an approximate condensed 

mass matrix using energy equations. The method was used by ANS YS [76] and extended to 

calculate condensed damping matrices. 

An exact method for condensing dynanfiic matrices was developed herein, and used in 

DYNTRN. The method used a simplified form similar to the static condensation equations, 

and was extended to nonlinear analysis. 

3.3.3.1 Matrix Condensation Process in Dvnamic Analvses 

The Newmark technique previously presented needs to be modified to be used in cable 

elements which consist of several sub-elements, with internal degrees-of-freedom. In this 

case, the problem is solved in two phases. In the first phase, the internal degrees of freedom 

for each element are condensed, and accounted for by a modified stiffness matrix and a 

modified force vector. By eliminating the intemal degrees of freedom, the solution of the 

problem can proceed as shown in the Section 3.3.2. In the second phase the displacements 

and forces of the intemal nodes are updated using the values associated with the external 

degrees of freedom, which were obtained in the first phase. The dynamic condensation is 

explained in details next. 
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The condensed equation of motion can be written as: 

([ifJo - = (^ZIb f^ilp 3.12 

Where the subscripts 1 and 2 refer to the internal and external degrees-of-freedom, 

respectively. The complete derivation of Equation 3.12 , and symbol definitions can be found 

in Appendix B. Equations for calculating [Kjjlp and {AFJ^ are also listed in Appendix B. 

Equation 3.12 can be expressed in the form; 

Assuming the initial velocity and acceleration to be defined for both the internal and 

external loads, both [KjjJeq and {AF2eq}„+i can be calculated. By adding [KjjJeq to the total 

structure stiffness matrix, and adding {to the total structure load vector, one can 

solve for the incremental displacements {AU^ln+i. One can then substitute into equations 3.4 

and 3.5 to obtain the incremental acceleration and velocity at the external nodes. 

The incremental displacements for the internal nodes, {AU, }„+„ can then be calculated 

using the following equation: 

3.13 

where: 

{^,}d 

3.14 

3.15 

The incremental acceleration and velocity of the internal nodes can also be calculated 

using Equation 3.4 and 3.5. Using these incremental values, the displacement, velocity and 
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acceleration of the internal nodes can be updated to reflect the values at the end of the time 

step, using Equation 3.7. This process can then be repeated for the following time steps. 

3.3.3.2 Adapting the Condensation Process to Nonlinear Analysis 

The condensation process as described above is suitable for linear analysis. In order to 

use the same procedure for nonlinear analysis some modifications have to be introduced. 

The structural equations of motion of the structure considering nonlinear effects can be 

written as: 

-  [RF,] 
3.16 

3.17 

Where, {FS} is the straining force vector, and is calculated by evaluating the total strains 

on elements, {RF} is the residual force vector, and F is the external load vector. 

In a nonlinear analysis, the ultimate goal is to reduce the residual forces {RF} below a 

specific tolerance value. In order to minimize the residual forces associated with the internal 

as well as the external degrees of freedom, iterations are performed on the internal degrees of 

freedom, until the internal residual forces, {RF,} are nearly eliminated for each iteration of 

the external degrees of the freedom. 

3.4 Development of the Graphical User Interface 

In order provide good graphical capabilities in the dynamic simulation program, 

DYNTRN, the Graphical User Interface, GUI, of DYNTRN was developed to produce the 

following feamres: 

• Simplified input/output. 

• User-friendly and highly interactive interface. 
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• Integrity and error checking. 

• Graphical output of geometry and data. 

In order to develop the above features, it was found to be more efficient to use a software 

other than Visual C-H- [72] for this purpose. Delphi [80], an Object Pascal development suite, 

was found superior to the Visual C++ since it included more than 70 graphical objects ready 

to use and modify. It was necessary, however, to communicate between the main program 

written in the Visual C++ environment and the GUI developed in Delphi. This was done by 

converting the GUI to a Dynamic Link Library, DLL. As the name implies, the DLL is a 

library that is linked to the main program during execution. It basically contained the visual 

functions used to draw and implement the GUI. The DLL gave the main program, access to 

the services provided by the GUI developed using Delphi. 

There was a problem of back communication, however, firom the main program to the 

GUI library, i.e., the GUI library needed to access some of the services provided by the main 

program. For example, if the user clicks a menu item indicating a request to input nodal 

coordinates, the GUI will display the Nodal coordinates dialog box, and will need the 

services of the main program to retrieve information about the nodes that already existed in 

the database. Back communication was achieved through two channels: callback functions 

and messages. Callback functions are functions defined in the main program, and at the same 

time declared in the DLL, i.e., the DLL only knows the address of the function, but the actual 

implementation is included in the main program. Broadcasting messages is another way of 

communication, where a program or a library sends a message to another program. The topic 

of message broadcasting is beyond the scope of this work, and is specific to Microsoft 

Windows environment. More discussion about this issue can be found in [81], The 

relationship between the GUI library and the main program is shown in Figure 3.11. The 

details of the different objects and functions used to develop the GUI library are outside the 

scope of this presentation, and therefore will not be discussed. 
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Direct Function, 

Callback Functions rMiU^iBgOT^ 

Messages 

Figure 3.11- Relation between Main Program and GUI Library 

3.5 Using the Dynamic Simulation Software, DYNTRN 

In most structural analysis programs, the analysis process consists of three sequential 

phases: The modeling phase where geometry and loads are specified, the solution phase, 

where the equilibrium equations are solved, and the output phase where the results are 

obtained. The relation between these phases, however, possesses more flexibility in 

DYNTRN than in conventional structural analysis programs. In DYNTRN, for example, the 

solution can be stopped at any time, certain aspects of the model can be changed and then the 

solution can be resumed. Results can also be viewed as the solution proceeds. 

Figure 3.12 shows the relation between the main components of the structural model. 

Each element possesses information about the attached nodes, the applied element loads, and 

the material and section-properties specific to the element. Each node contains information 

about the nodal loads applied to it. DYNTRN identifies loads, properties, nodes and elements 
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using names specified by the user. 

The relationship between the components of the structural model requires a special 

sequence in constructing the model. For example, an element cannot be defined if the 

attached nodes are not defined first. Similar precautions have to be observed when altering 

the model by removing an element or a node from the model. A node, for example cannot be 

removed, if an existing element is still attached to the node. In the following sections, 

different steps involved in the modeling and solution processes using DYNTRN will be 

explained. 

Nodal Load 

Node 

Element Load Element 

Section Property 

Material Property r 

Figure 3.12 Relation between the Components of the Structural Model 

3.5.1 Defining Loads 

Figure 3.13 shows the load time-history used by DYNTRN. A time scale has to be 

defined by the user. The time scale specifies the main time points used to define the load 

history. In Figure 3.13, four time points, (to - tj), were specified, and corresponding load 

values, (Fq - F3), were defined. The load, Fj, applied to the structure at any time, tj, can be 

calculated by interpolating between the defined loads. At least two time points have to be 

specified for the load history. The user can define two types of loads, nodal loads and element 

loads. 
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^Load (F) 

Fit-' 
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^ ^ ^ Time(t) 

Figure 3.13 Load History as defined in DYNTRN 

Figure 3.14 shows the dialog box used to input the nodal load time-history. For each 

defined time point, nodal loads, i.e., forces and moments, and nodal restraints are specified in 

the global coordinate system. Figure 3.15 shows the window used to define the element 

loads. The current version of DYNTRN only support uniform loads along the fuU span of the 

element. Element loads can be defined in the global coordinate system, or in the element 

local coordinate system. 

Figure 3.14 Nodal Load Input Window 



www.manaraa.com

48 

WSHIELO 

Figure 3.15 Element Load Input Window 

3.5.2 Defining Properties 

Figure 3.16 shows the window used to define the section properties for the element. 

Values for the cross-sectional area. A, the moments of inertia, IYY, and Izz and the polar 

moment of inertia, I^x, are specified for each defined section. Figure 3.17 shows the window 

used to define the material properties used for the element. Young's modulus of elasticity, 

poisson ratio, mass density, coefficient of thermal expansion, and the parameters, a and p, 

are specified for each defined material property. The parameters, a and P, are used to 

calculate the damping matrix for the element as follows: 

[C]= a[M] + p[An 3.18 

Where, [M],[K] and [C] are the mass, stiffness, and damping matrices, respectively. 

I 

Figure 3.16 Section Properties Input Window 
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Figure 3.17 Material Properties Input Window 

3.5.3 Deflning Nodes 

Figure 3.18 shows the dialog box used for defining nodal data. The user supplies the 

coordinates of the node in the global coordinate system, and the name of the applied nodal 

load time-history, if any. 

NOLOAD 

^̂ 3 
-5.5B 

43.75 

Figure 3.18 Node Input Data 
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3^.4 Defining Elements 

The current version of DYNTRN is capable of analyzing four types of elements: 3-D 

beam elements, 3-D cable elements, 3-D truss elements, and spring elements, ti the cable and 

truss elements, the internal forces are calculated using large displacement theory. In the beam 

element, both the large displacement and large rotation theories are applied. The spring 

element is a linear element. A description of the different elements used in DYNTRN is 

given next. 

3.5.4.1 The Beam Element 

The beam element is defined using three nodes. The first two nodes define the two ends 

of the beam element. The third node is used to define the local coordinate system of the beam 

element as shown in Figure 3.19. In the current version of DYNTRN, element loads cannot 

be applied on beam elements. 

Local XY Plane 

3- / 

Beam Element 

XG 

Figure 3.19 Orientation of the Beam Element 

3.5.4.2 Cable Elements 

DYNTRN models the cable element using a number of two-nodes tension-only axial 

sub-elements. The number of sub-elements included is chosen by the user. A minimum of 

five elements, and a maximum of 100 elements can be used. The choice of the number of 
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sub-elements to be used depends on the type of analysis to be performed. Generally, as the 

contribution of higher mode shapes increases in the solution, more sub-elements have to be 

used to accurately model the cable element. A sensitivity study is usually a good means of 

assessing the effect of the number of sub-elements used to model the cable element on the 

accuracy of the results. 

Figure 3.20 shows the input window for a cable element. The element is defined using 

two nodes. The two nodes define the end points of the cable element. The local axes of the 

cable element are oriented so that the local x-axis is along the span of the cable, and the local 

x-z plane is normal to the global x-y plane. The un-stretched length of the cable is either 

specified directly, or calculated using stringing tension information. An element load time-

history can be applied to the cable element,or galloping motion can be applied instead. The 

galloping motion and the load time history cannot be applied simultaneously on the same 

element. A galloping motion cannot be applied on a cable element oriented parallel to the 

global z-axis. For the case of a galloping cable, the weight of the cable is assumed to act in 

the direction of the negative global z-axis. 

F 
CABLE 

^litum^ScyaS-EiOT $ 

LARM2 
LARM3 

g^KiffieiiitlCCOPPER 

RARM2 
RARM3 

383.77 

(.'• - *fV 

* i -r. — — . -.'/RF—,IR 

Figure 3.20 Cable Element Input Data 
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Figure 3.21 shows the window used to define the galloping motion for the cable element. 

The weight of the galloping cable, the amplimde of the in-plane and out-of-plane galloping, 

the initial phase of the galloping conductor, and the galloping mode are required as input for 

the galloping motion. The frequency of the galloping conductor is either supplied directly by 

the user, or specified as the natural vibration of the specified galloping mode. In that case, it 

is calculated by the program. The mode shapes used to calculate the galloping motion of the 

conductor are calculated using the formulation developed by Irvine [8], which is explained in 

Chapter 2. This formulation assumes the conductor to be flat. As stated in Chapter 2, the 

difference between the natural frequencies calculated using the flat-sag formulation and that 

obtained using the deep-profile formulation was found by Irvine [8] to be less than 6% when 

the sag-to-span ratio was 13%. The error increased to 20% for a sag-to-span ratio of 23%. 

Therefore, for cables with deep profiles the results of the galloping analysis using DYNTRN 

should be checked carefully. 

Figure 3.21 Galloping Vibration Input Data 

3.5.4.3 Truss Element 

The truss element is a two-nodes axial element. The element is defined using two nodes. 

The orientation of the local axes is calculated similar to the cable element discussed in 

Section 3.5.4.2. Element loads cannot be applied to the truss element. Truss elements can be 
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defined by the user to be tension-only, i.e., the stifftiess of the element becomes zero, if the 

element is subjected to a compression force. 

3.5.4.4 Spring Element 

The spring element is a linear element with one degree-of-freedom. The element is 

defined using one node, and is oriented in the direction of one of the global axes. The 

stiffness of the spring element is required as input by the user. The spring element can be 

used as a simplified representation of the transmission line support structures. Temporary 

spring elements can also be used to help in achieving a converged solution, as explained in 

Section 3.5.5. 

3.5.5 Solving the Problem 

Both dynamic and static analysis can be performed in DYNTRN. Figure 3.22 shows the 

solution dialog box. The user supplies the end time of the solution, and the solution time step 

The solution starts at time zero, or at the end time of the previous solution phase. The choice 

of the time step size is important to obtain an accurate solution. As a general guideline, the 

time step should be less than 1/10 of the highest mode shape which significantly participates 

in the solution. Sometimes, a smaller time step might be needed to achieve a converged 

solution. Sensitivity studies should be conducted to evaluate the effect of the time step size 

on the accuracy of the results. 

Figure 3.22 Solution Input Data 
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At any time, the solution process can be stopped and the structural model can be altered, 

by deleting an element, for example, or changing the material properties. The solution can 

then be resumed. The time at which the previous solution phase stopped will be used as the 

start time for the new solution phase. This process of stopping and resuming the solution 

allows for performing failure analysis, where an element can be removed, such as a cable 

element, to simulate a broken conductor event. 

In some cases, the solution process encounters degrees-of-freedom with low stiffness 

values at certain points on the nonlinear path of the solution. A vertical truss element, for 

example, will posses very little stiffness to resist a lateral horizontal force, until the 

orientation of the element is changed to an inclined position. In the inclined position, the 

horizontal component of the element axial stiffness is used to resist the lateral horizontal 

force. If a DOF with very low stiffness exists in the structure at any time during the solution, 

unrealistic large deformations may occur, thus, causing the solution to diverge. To solve this 

divergence problem, a temporary spring may be placed at that DOF to artificially increase its 

stiffness. When the geometry of the structure is updated, causing the stiffness value of the 

DOF to increase, the solution can be stopped, the spring element removed, and then the 

solution can be resumed. 

3.5.6 Checking the Results 

Figure 3.23 shows the main window of the DYNTRN program. A deformed plot of the 

transmission line as well as a parametric plot of user-defined variables is shown in the figiire. 

Using user-defined variables, nodal displacements, rotations, velocities, accelerations, forces 

and moments can be checked. The plots are updated as the solution proceeds, thus allowing 

the user to check and respond to the results during the solution phase. During the solution 

phase, the analysis results are stored at the end of every n"* time step, where n is a number 

defined by the user. After the solution is complete, a complete printout of the results can be 

obtained for any time value, for which the solution results were stored. 



www.manaraa.com

55 

File Loads input Solve Variables Output Help 

ZoomV^tli 

{ • - - - ',1 -g— ur ^ . 

Figure 3.23 DYNTRN Main Window 
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CHAPTER 4 - SOFTWARE VERIFICATION 

Testing the validity of the dynamic analysis program (DYNTRN) results, was done in two 

phases. In the first phase, the results produced by DYNTRN were verified using analytical 

results produced by ANSYS [76], a commercial finite element program. When a theoretical 

solution of the problem was known, the theoretical results were used for comparison instead 

of ANSYS. In the second phase, DYNTRN was calibrated using published experimental 

data. Four types of dynamic simulations were conducted and compared to experimental 

results: a broken insulator analysis, a broken conductor analysis, a broken shield wire 

analysis, and a conductor galloping analysis. 

4.1 Analytical Verification 

The main objective of the analytical verification was to verify that DYNTRN was 

producing accurate and reliable results. In addition, it was performed to eliminate any 

mistake from the software. Therefore, this verification was performed simultaneously with 

the development process. The major steps in the analytical verification process can be 

summarized as follows: 

• Verification of the large deflection solution of all the elements included in DYNTRN, 

due to static loads. Examples 1 and 2 in Appendix D show the analytical verification 

for a 3-D beam element and a 3-D truss element, respectively. The results of these 

two examples were compared to ANSYS. Examples 3 and 4 in the appendix present 

the validation for the spring, and cable elements, respectively, as compared to closed 

form solutions. 

• Verification of the time integration scheme used in the dynamic analysis, as shown in 

Example 5 in Appendix D. 

• Verification of the dynamic condensation method developed in this study and 

presented in Chapter 3. Example 6 in Appendix D compares the results obtained 

using DYNTRN, with that obtained using ANSYS. Unlike ANSYS, DYNTRN used 

the dynamic condensation method to represent the cable element. 
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• Verification of the conductor galloping routine for a single span conductor fixed at 

both ends, as shown in Example 7 in Appendix D. The conductor galloping results 

obtained by DYNTRN were compared to results calculated analytically using the 

closed form formulation developed in Appendix E. 

• The final stage was to verify a problem which modeled a real transmission line. The 

dimensions and properties of a real line were obtained from Reference [3], and were 

used to construct a three-span transmission line computer model (see Example 8 in 

Appendix D). The problem was solved using both DYNTRN and ANS YS due to 

static and dynamic loads. Comparison of the results is shown in Appendix D. 

Analytical verification of DYNTRN showed good agreement with theory and ANSYS. 

This verification, however, only showed that DYNTRN produced reliable results to the 

analysis of the finite element model. It did not, however, show the adequacy of the finite 

element model in representing a real transmission line. To prove the adequacy of DYNTRN 

in simulating real transmission lines, comparison with published experimental data was 

performed. The experimental verification of DYNTRN is presented in the next section. 

4.2 Experimental Verification 

4.2.1 Broken Insulator Analysis 

4.2.1 • 1 Description of the Problem 

A broken insulator analysis refers to a situation where an insulator is broken followed by 

the free fall of the conductor. DYNTRN simulates a broken insulator analysis by removing 

the element representing insulator from the structure database. Therefore the conductor will 

start to fall under its loads, and its response can be tracked. 

4.2.1.2 Background on Experimental Data 

A series of broken insulator experimental tests were performed on an eight-span segment 

of a retired 138-KV transmission line in Wisconsin [1]. The line consisted of six intact 

spans and two end spans anchored to the ground. The support structures were square base 

lattice steel towers with six conductor phases. A schematic elevation view of the structure is 
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shown in Figure 4.1. For detailed information about the experimental data, the reader is 

referred to Appendix F. The phase labeled R2 in Figure 4.1 and Appendix F was the only 

phase modeled and simulated using DYNTRN. In the broken insulator experiment using 

phase R2, Reference [1] reported that the falling conductors did not reach the ground level 

This information was important in the verification process, because the current version of 

DYNTRN doesn't have the capability of analyzing a cable that hits the ground. 

L3 •. .: -"RS 
L2 " :  R2 
LI •R1 

Figure 4.1- A Sketch of the Lattice Structures Tested in Reference [1]. 

4.2.1.3 Analvtical Model 

The computer model developed to represent phase R2 of the transmission line is shown in 

Figure 4.2. Conductors were modeled as cable elements, while insulators were modeled as 

truss elements. The properties of the conductors and insulators on phase R2 are listed in 

Table 4.1. The cross section area and modulus of elasticity of the insulator were not listed in 

the reference [1], and thus realistic values were assumed. Performing a parametric study on 

the value EA (young modulus * cross section area of the insulator) showed that the solution 

is not sensitive to the variation in this value. However, a smaller value of EA yielded better 

numerical stability for the solution. The above conclusion, regarding EA sensitivity, is in 

accordance with the results found in [6]. 

The support structures were modeled as linear springs, with stiffnesses calculated from 

force-displacement data of the support structures presented in the test report [1]. The stiffness 

data were calculated by performing linear static analysis on a single support structure. 
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Figure 4.2. Computer Model for Broken Insulator and Broken Conductor Tests 

Table 4.1- Conductor and Insulator Properties - Broken Insulator/Conductor Model [1] 

Cable Properties Insulator Properties 

Type 471A copper/bronze Type Single string porcelain 
bells 

Area 0.3 in.^ Area Assumed (1 in.^) 

Young modulus 15,000,000 psi Young modulus Assvuned (2,900,000 psi) 

Weight / length 0.073 lb/in Weight Assumed (67 lb) 

Stringing tension 4305 lb Length 87 in. 

Therefore, the stiffness values may be underestimated because the effect of the attached 

conductors and shield wires were not included. The stiffness used for the vertical and 

horizontal directions were 6030 lb/in. and 2670 lb/in., respectively. 

4.2.1.4 Sensitivity Smdies 

In order to acquire confidence in the model, sensitivity studies were performed on the 

dynamic time step, as well as the number of cable elements used per span. Changing the size 

of the time step from 0.10 sec to 0.05 sec produced approximately the same response. 

Similarly, the number of cable elements per span had a negligible effect on the response. 
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Comparing five, ten, and twenty elements, the insulator force next to the break differed by 

less than 2%. Therefore, for the broken insulator simulation, ten cable elements per span and 

a time step of 0.05 seconds were used. A small value for the time step size was used (1% of 

the period) in order to capture the details of the time-response of the results. 

4.2-1.5 Analytical Simulation 

The broken insulator incident was simulated in the computer model in two steps. First, a 

static analysis was performed due to conductor self weight. Then, the insulator at Location 5 

was removed from the program database (see Figure 4.2). Since the damping of both the 

insulators and the conductors were not known, a range of realistic values was smdied. The 

results illustrated that the solution was not very sensitive to the value of damping of the 

insulators. The solution, however, was affected by the value of damping used for the 

conductors. The damping was applied to the conductors as a ratio of the cable stiffness. The 

damping matrix, [C]= P*[K], where [K] is the stiffness matrix, and P is a user-defined ratio. 

4.2.1.6 Results and Discussion 

Figure 4.3-A shows the insulator force to the left of the broken insulator, at Location 4, 

for two P values, 0.01 and 0.04. These values correspond to damping ratios, T], of 0.5%, and 

2% respectively, and are calculated using the following equation: 

Where o) is the natural frequency in rad/sec of the falling conductor first mode of 

vibration. 

Figure 4.3-B shows the horizontal component of the insulator force for the same 

damping values. The value of the peak tension in the insulator changed from 2320 lb to 2120 

lb (about 9.4%) as the damping ratio increased from 0.5% to 2%. The peak horizontal 

components of the insulator force were 896 lb and 809 lb, for 0.5% and 2% damping, 

respectively. The published experimental values for the insulator force and its horizontal 

components were 1960 lb and 891 lb, respectively. 

Table 4.2 shows a comparison between the analytical and experimental values of the 
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peak insulator force at Location 4, after an insulator broke at Location 5. Also listed is the 

percent error in the analytical results when compared to the published experimental data. 

From the results listed in die table, it can be seen that the conductors' damping properties 

affect the results of the computer simulation. Unfortunately, the damping properties of the 

conductors were not listed in the experimental report [1]. 
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A) Insulator Force at Location 4 B) Horizontal Insulator Force at Location 4 

Figure 4.3 Broken Insulator Results using DYNTRN 

Table 4.2 Insulator Force at Location 4 - Analytical vs. Experimental 

Insulator Force Insulator Force 
(Longitudinal Component) 

Value Error' Value Error' 

Analytical (0.5% damping) 2,320 lb 18% 8961b 0.5% 

Analytical (2.0% damping) 2,120 lb 8% 809 lb -9.2% 

Experimental 1,960 lb N/A 891 lb N/A 

' Error = ((analytical value- experimental va ue) / experimental value ) x 100 
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4.2.2 Broken Conductor Analysis 

4.2.2.1 Description of the Problem 

In a broken conductor analysis, the effect of a broken conductor on the adjacent spans of 

the transmission line is investigated. A broken conductor problem is simulated in DYNTRN 

by removing the cable element representing the broken conductor from the program database. 

4.2.2.2 Background on Experimental Data 

DYNTRN was also validated using the broken conductor results presented in 

reference [1]. A series of broken conductor tests were conducted on the same line mentioned 

the section 4.2.1. The test chosen for verification used the same conductor phase, R2, used in 

the broken insulator analysis presented earlier (see Figure 4.2). For more information on the 

experimental data used in this analysis, refer to Appendix F. 

4.2.2.3 Analvtical Model 

The computer model was exactly the same as the one used for the broken insulator 

analysis (see Figure 4.2). The properties of the model are listed in Table 4.1. 

4.2.2.4 Sensitivitv Studies 

A sensitivity smdy was performed to find the effect of the number of cable elements per 

span on the analysis results. Figure 4.4 shows the insulator force at Lxjcation 3, to the left of 

the broken conductor. The figure shows the results of three analyses, using 10,20 and 30 

cable elements per span. The response of the first analysis using 10 elements was 

approximately 10% higher than the second analysis using 20 elements. The latter was 

approximately 2.5% higher than the third analysis using 30 elements. Based on these results, 

it was decided to use 20 elements per span for the broken conductor problem presented 

herein. 

In order to reach convergence in the broken conductor problem, it was necessary to use 

time step size of 0.001 sec. In some cases, it was even necessary to use a value as small as 

0.0001 sec during parts of the analysis where the cable was slack, i.e., had zero tension. 

These values of the time step were considerably smaller than the value used in the broken 

insulator analysis, and values recommended in the literature [6]. Therefore, no ftuther 

reduction in the size of the time step was conducted to investigate its effect on the results. 



www.manaraa.com

63 

4.2.2.5 Analytical Simulation 

The broken conductor analysis was conducted in two steps. First, a static analysis was 

conducted due to the conductors' self weight. Then, the cable element representing the 

conductor between Lxx:ations 2 and 3 was removed from the program database, and a 

dynamic time integration analysis was performed. 

Time (sec) 

10 Elements 20 Elements 
30 Elements 

Figure 4.4 Broken Conductor Analysis - Sensitivity Study 

4.2.2.6 Results and Discussion 

Figure 4.5 presents the computer analysis results of the broken conductor problem. 

Figure 4.5-A shows the force in the insulator at Location 3, to the left of the broken 

conductor. Figure 4.5-B shows the force in the insulator at Location 4. The results are plotted 

for three values of the damping parameter, P, of the cable element: 0,0.004 and 0.015. These 

values correspond to damping ratios, T], of zero, 0.5%, and 2%, respectively. Damping ratios 

are calculated as shown in Equation 4.1. 

As seen in Figure 4.5, the response consists of two peaks occurring at approximately 0.65 

sec and 1.5 sec. The figure also shows that the results are very sensitive to the conductor 

damping ratio used in the analysis. The peak force increased by approximately 25% as the 

damping decreased from 2% to 0.5%. 

Table 4.3 shows a comparison between the results obtained from the computer model, 
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and the published experimental results. The times listed are the times at which the peaks 

occurred. In the computer model, the time at which the first peak of the insulator force 

occurred was 0.15 sec higher than the time reported in the experimental report. Also listed is 

the percent error in the analytical results when compared to the published experimental data. 

For a damping ratio of 2%, the difference between the analytical and experimental results 

was more than 30%. The difference decreased to approximately 20% as the damping ratio 

decreased to 0.5%. With no damping present in the conductor, the difference decreased to 8% 

for the force at Location 3, and 16% for that at Location 4. 

BOOO-

7000-

S- 5000-

2000-

1000-

0 0  ̂ 0.4 0.6 0.8 1 1.2 1.4 1.6 

Time (KC) 

3000-

2500 

2000-A 
• 1500 

U- 1000 =V 

500 - \  

0 OJZ 0.4 0.6 O.B 1 1.2 1.4 1.8 

Time (sec) 

No Damping 
— 0.5 % Damping 

• • 2.0 % Damping 

A) Insulator Force at Location 3 

No Damping 

— 05 % Damping 

' - - 2.0 % Damping 

B) Insulator Force at Location 4 

Figure 4.5 Broken Conductor Analysis- Analytical Results 

Two conclusions can be drawn from the results in Table 4.3. First, the broken conductor 

analysis is more sensitive to the damping value, p, than the broken insulator analysis, 

presented in Section 4.2.1. This may be due to the participation of higher modes in the 

broken conductor case, where a very small value of P is needed to ensure that the higher 

modes of vibration are not damped out. Secondly, the results obtained by the computer 

program, DYNTRN, are under-conservative compared to the experimental results. The 

analysis showed, however, that using 10 cable elements per span instead of 20 to model the 

conductors yielded results that are closer to the experimental results. The first peak for the 
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Table 4^ Broken Conductor Results - Analytical vs. Experimental 

hisulator Force at Location 3 (Next to break) 

First Peak Second Peak 

Value Error' Time^ Value Error' Time^ 

Analytical (No damping) 5,100 lb -8.1% 0.64 sec 7,2001b -8.1% 1.48 sec 

Analytical (0.5% damping) 4,910 lb -11.5% 0.64 sec 6,480 lb -17.3% 1.44 sec 

Analytical (2.0% damping) 4,550 lb -18% 0.66 sec 5,210 lb -33.5% 1.41 sec 

Experimental 5,547 lb N/A 0.50 sec 7,832 lb N/A 1.5 sec 

Insulator Force at Location 4 (One span away from break) 

First Peak Second Peak 

Value Error' Time^ Value Error' Time^ 

Analytical (No damping) 2,370 lb -16.3% 0.64 sec 2,270 lb -11.5% 1.48 sec 

Analytical (0.5% damping) 2,270 lb -19.8% 0.67 sec 2,450 lb -4.5% 1.41 sec 

Analytical (2.0% damping) 1,850 lb -34.7% 0.68 sec 2,280 lb -11.1% 1.39 sec 

Experimental 2,832 lb N/A 0.47 sec 2,566 lb N/A 1.3 sec 

' Error = ((analytical value- experimental value) / experimental value) x 100 

^ Time at which the peak in the force value occurs 

insulator force at Location 3, for example, was less than the experimental value by about 1.5 

percent, when no cable damping was used. From a theoretical point of view, however, 

modeling the conductor with 20 elements per span should yield a more accurate result. 

The conclusions drawn above are based on a single experiment, and cannot be 

generalized. Therefore, an extensive experimental program is needed to produce general 

guidelines about the results of the computer simulation program, DYNTRN, with respect to 

the broken conductor analysis. This, however, is not within the scope of this report. The 

discussion in this section showed that the computer simulation produced results that are close 

to the experimental results, when small or no cable damping is used. 
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4.2.3 Broken Shield Wire Analysis 

4.2.3.1 Description of the Problem 

In a broken shield wire analysis, the effect of a broken shield wire on the supporting 

structure and adjacent spans of the transmission line is investigated. A broken shield wire 

problem is simulated in DYNTRN by removing the cable element representing the broken 

shield wire from the program database. 

4.2.3.2 Background on Experimental Data 

Mozer et al. [3] conducted a series of broken conductor and broken shield wire tests on a 

scale model to study the behavior of transmission lines due to these loading conditions. The 

test model consisted of two scale-model structures and three 32 ft spans of conductors and 

shield wires, as shown in Figure 4.6. Conductors and shield wires were modeled using 18 and 

24 gauge copper wires, respectively. Lead weights were attached to the wires to increase their 

weight. A schematic of the model strucmre is shown in Figure 4.7. Detailed information 

about the experimental data is listed in Appendix F. 

Shield Wire 

Broken Shield Wire 

Model Structure 

Conductor 

T2 

Figure 4.6 Analytical Model used in the Broken Shield Wire Verification 
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Figure 4.7 Scale Model of Transmission Line Structure [3] 

4.2.3.3 Analytical Model 

The computer model used to represent the experimental scale model is shown in 

Figures 4.6 and 4.7. Beam elements were used to represent support structures, truss elements 

were used to represent insulators, and cable elements were used to represent conductors and 

shield wires. The cross sectional properties of the support strucmres, and the insulators are 

shown in Figure 4.7. Properties of the conductors and shield wires are listed in Table 4.4. 

Table 4.4 Conductor and Shield Wire Properties - Broken Shield Wire Analysis 

Property Name Conductor Shield Wire 

Type Copper 18 gauge Copper 24 gauge 

Area * Young modulus (EA) 121001b 3300 lb 

Weight / length 0.0597 lb/ft 0.0132 lb/ft 

Stringing tension 15.3 lb 1.51 lb 
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4.2.3.4 Sensitivity Studies 

A sensitivity study was performed to assess the effect of damping and other parameters 

on the moment at the base of the model structure. Both the conductor damping and the shield 

wire damping ratios had negligible effect on the results. The structure damping, however, had 

a small effect on the results. Increasing the damping ratio from 1% to 5% decreased the value 

of the first peak from 130 Ib-in. to 123 Ib-in.; about 5%. A sensitivity study on the number of 

cable elements per span showed that using 10 cable elements per span yielded the same 

results as 20 elements for the broken shield wire analysis. 

4.2.3.5 Analytical Simulation 

The Uransmission line was analyzed first due to static loads listed in Table 4.4. Then the 

broken shield wire event was simulated by removing the cable element representing the 

broken shield wire as shown in Figure 4.6. The simulation was performed using a value of 

damping of 0.5% and 1% for the cables (conductors and shield wires) and the structures, 

respectively. A time step size of 0.01 sec was used in the simulation, which is about 2.5% of 

the shield wire fundamental period of vibration. A value of a time step smaller than that 

recommended in the literature [6] was used to capture the details of the time response of the 

results. 

4.2.3.6 Results and Conclusion 

A comparison between the analytical and experimental solution is shown in Figure 4.8. 

The figure shows the moment at the base of the model structure at Location B1. The moment 

plotted is the moment bending the structure in the direction of the line, M,. The figure shows 

good agreement between the computer simulation and the experimental results. 

4.2.4 Conductor Galloping Analysis 

4.2.4.1 Description of the Problem 

Conductor galloping refers to the low frequency, high amplitude vibration occurring to 

conductors due to the action of wind on iced conductors. DYNTRN simulates the galloping 

action of the conductor by imposing a harmonic displacement on the cable with an amplitude 

that represents the amplitude of galloping. Therefore, to utilize this method, one needs to 
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Figure 4.8 Broken Shield Wire - Moment at B1 

define the amplitude and frequency of the galloping motion. Several galloping models exist 

in the literature that can be used to obtain these values. Some galloping models can also 

provide the mode shape in which the conductor will gallop (see Chapter 2 for a review of 

galloping models). 

As reported in the literature, a stable galloping vibration will occur in one of the dynamic 

mode shapes of the conductor [38,39]. Therefore, the shape of the imposed displacements 

on the cable element should be selected to match one of the conductor's vibration modes. 

This process is shown schematically in Figure 4.9. The galloping simulation procedure can be 

summarized as follows: 

1. At the begiiming of a time step, the profile of the galloping conductor, Xg, can be 

expressed as: 

Where Xj is the static profile of the cable resulting from the static load supplied by the 

user, Ag is the galloping amplimde defined by the user, MS; is the normalized mode 

shape for mode i. a)g is the frequency of the galloping vibration in rad/sec, and t is the 

time in seconds. The frequency of galloping is either provided by the user or selected 

as the natural frequency of mode i. The user also selects which vibration mode to be 

used in the galloping analysis. 

= X + MS. sin(6)„0 g  s  g  I  ^  g '  4.2 
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2. After calculating the position of the cable using Equation 4.2, the stiffness and cable 

end forces are calculated. The cable stiffness matrix is used in the assembly of the 

global stiffiiess matrix of the structure. The end forces are added to the global internal 

force vector of the structure, and the global residual force vector is calculated as 

explained in Chapter 3. 

3. If the L2 norm of the residual force vector is smaller than the tolerance value chosen 

by the user, the analysis has converged, and proceeds to the next time step. Otherwise, 

the position of the end nodes of the cable element is updated, and a new static profile 

and mode shape are calculated for the updated position of the cable. The galloping 

profile of the cable is then recalculated according to Equation 4.2, and the analysis 

proceeds to Step 2. 

Static Profile 

Mode Shape X 
Galloping AmpUtude X 
Sin(wt) 

Final Shape 

Figure 4.9 Conductor Galloping Analysis 

4.2.4.2 Background on Experimental Work 

In order to validate the galloping procedure discussed above, it was necessary to find 

experimental work on galloping that gives information on both the amplitudes of the 

galloping motion and its effect on the transmission line components, such as the forces in the 

attached insulators, or the stresses in the supporting structures. Unfortunately, in most of the 

reviewed experimental work related to galloping, the galloping amplimde and shape of 

vibration were the major parameters studied, and no information on the galloping forces was 

published. In few situations, such as Reference [2], galloping forces were the main focus of 

investigation, but the corresponding galloping amplitudes were not mentioned. Reference [2] 
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was used to verify the galloping method. However, no galloping amplitudes were reported in 

the experimental work. There was also no information given about the ice shape accumulated 

on the conductor, and therefore the galloping amplitude could not be calculated using the 

galloping models discussed in Chapter 2. Therefore, the data was only used to compare the 

shape and frequency of the response. The comparison, however, does not prove the accuracy 

of the results as far as values are concerned. In Reference [2], the insulator force response 

was published for two cases of real galloping situations. The conductor used was 

Grosbeak 636. For more information about the experimental data published in Reference [2], 

see Appendix F. 

4.2.4.3 Analvtical Model 

Figure 4.10 shows the computer model used to represent the transmission line. Four 

conductor spans were included in the model. The support structures were considered rigid, 

and were replaced by fixed supports, since no information about the supporting structures 

was given in the reference. This assumption was justified because the reported magnitude of 

galloping forces was not high enough to cause considerable deformations in the stmctures. 

The conductors were assumed to be on the same elevation, since no information about the 

elevations was reported. Conductors were represented using cable elements with 10 sub-

elements per span. Insulators were modeled using truss elements. 

Insulator Conductor 

^.483 ft ^ 797 ft 658 ft 666 ft 
>• 

Figure 4.10. Computer Model used in the Conductor Galloping Analysis Example [2] 
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4.2.4.4 Analytical Simulation 

A static analysis was perfonned due to a uniform load of 0.875 lb/ft applied on the 

cables. Although the magnitude of the load was not listed in the reference [2], it was 

calculated using the listed insulator tension data. Galloping amplitudes of nine inches and ten 

inches were then imposed on span 2 and span 3, respectively. Span 2 was forced to vibrate in 

the first anti-symmetric mode, while span 3 vibrated in the first symmetric mode. The 

frequency of the galloping vibration was chosen to be 0.46 Hz and 0.28 Hz for span 2 and 3, 

respectively. No galloping amplitudes were imposed on spans 1 and 4. The galloping 

amplitudes, frequencies and modes of vibration used in the analytical model were chosen to 

give a response similar in magnitude and frequency to that obtained in the experimental 

report by McConnell [2]. In order to perform the comparison between the analytical and 

experimental results, a frequency analysis of the analytical response was performed and 

compared to the results of the frequency analysis performed in the experimental report [2], 

which showed that the most dominant frequencies were 0.28 Hz and 0.46 Hz with 

corresponding amplitudes of 55.4 lb and 36 lb, respectively. 

4.2.4.5 Results and Discussion 

Figure 4.11 shows the force in the insulator between spans 2 and 3, obtained from the 

computer model as well as the experimental data. The experimental data were obtained at a 

wind speed of 8.1 mph. It can be seen that both responses are comparable. The discrepancies 

between the two responses might be due to the higher modes of vibration detected in the 

experimental report, but was not modeled in the analytical solution. Only the most two 

dominant modes of vibration were modeled analytically, because in DYNTRN, more than 

one mode of galloping vibration cannot be imposed on the cable element simultaneously. 

As stated earlier, the comparison presented herein only proves that the analytical results 

are similar in nature to the measured results, but in no way does it prove its accuracy as far as 

values are concerned. It should be noted, however, that the relation between the galloping 

amplirnde and the corresponding conductor tension was verified using theoretical formulas 

for the case of a single span conductor fixed at both ends (see Appendices D and E). 
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Figure 4.11 Galloping Conductor Analysis - Analytical vs. Experimental 
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CHAPTER 5 - SUMMARY, CONCLUSION, AND 

RECOMMENDATION 

5.1 Summary 

A graphical computer simulation tool, DYNTRN [82], was developed for analyzing 

complete transmission lines including support structures, insulators, and conductors due to 

dynamic loading conditions, such as a broken conductor, a broken insulator, or conductor 

galloping. 

A literature review was conducted to study previous pertinent research. The cable element 

used to simulate conductors was smdied in detail. Research performed in the area of broken 

conductor and broken insulator analyses was also reviewed. Several galloping models 

presented in the literatiure were also documented. Output obtained from these models can be 

used as input to DYNTRN. Object Oriented Programming (OOP) was used as the 

development tool for DYNTRN. Therefore, principles of OOP, as well as previous research 

using OOP in structural analysis programs, were reviewed. 

The design of the analytical software using OOP was explained, and different objects 

used to develop the program were presented. The time integration procedure used to solve the 

dynamic equations of motion was explained. A dynamic condensation method used to 

condense the internal degrees-of-freedom of a cable element was developed and documented. 

A new pointer-based method was developed to efficiently store and solve large sparse square 

matrices. The procedure for solving large deflection and large rotation problems was also 

explained. 

Finally, analytical as well as experimental verification of the simulation software, 

DYNTRN, was conducted. Four experimental case studies, including a broken insulator 

analysis, a broken conductor analysis, a broken shield wire analysis, and conductor galloping 

analysis, were presented. 
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5.2 Conclusion 

This research produced a computer analysis tool that is capable of simulating the response 

of a complete transmission line system in 3-D. The main features of the computer program, 

DYNTRN [82], are: 

• The capability to analyze transmission line support structures, conductors, and 

insulators. 

• The ability to solve for different types of static loadings, including loads that are not 

readily solvable using general purpose finite element programs due to convergence 

problems, such as large horizontal imbalance loads caused by differential ice loading 

on transmission line conductors. 

• The ability to solve for different dynamic conditions including conditions that are 

specific to transmission lines, such as a broken conductor event, a broken insulator 

event, or a conductor galloping event. 

• An interactive and user fnendly graphical user interface, advanced graphical 

capabilities including 3-D plots, and real-time parametric graphs that are graphically 

updated as the solution proceeds. 

• The capability to use names instead of numbers to model nodes and elements of the 

transmission line, making large problems easier to model. 

• An interactive analysis solution, making it possible to change loads or properties or 

remove elements in the middle of an analysis. 

• The ability, through the use of OOP, to allow for future extensions and modifications. 

• An efficient pointer-based equation solver that is especially useful for large problems. 

• An innovative method for modeling cable elements using dynamic condensation. 

DYNTRN was tested for several dynamic loadings including a broken insulator, a broken 

conductor, a broken shield wire, and a galloping conductor analysis. The results showed 

reasonable agreement with experimental work published in the literature. 
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5.3 Recommendation 

Subsequent research on the work presented herein should focus on two directions. The 

first direction is the continuous enhancement of the capabilities and efficiency of the 

program. The second direction relates to experimental testing. 

DYNTRN was designed to allow for future extensions. This was made possible through 

the modular design of the program using OOP. Enhancements to DYNTRN could include 

new solution capabilities, improved solution techniques, or a more efficient program 

interface. The following future additions are proposed for DYNTRN: 

• Adding the capability to analyze a case with the conductor partially lying on the 

ground. 

• Integrating into DYNTRN one or more of the galloping models reviewed in 

Chapter 2. Thus, the galloping amplitude provided by the particular galloping model 

can be automatically included as input to DYNTRN. Currently, the user must input 

data from a separate calculation to DYNTRN. 

• Initiating a research program to develop and investigate an efficient method for 

simulating the cable element and calculating its stiffness matrix. 

• Developing an interface program for automatic generation of transmission line 

models. Location of support structures, geometry of the support strucmre, and the 

number of conductor phases are examples of typical input data to the interface 

program. The interface program could also include a database of common conductor 

types as well as common support structure types used in transmission lines. 

As shown in Chapter 4, only a limited validation of DYNTRN could be performed due to 

the limited amount of available experimental data. In order to further validate DYNTRN, an 

extensive experimental program is needed to: 

• Validate the stress and strain in the different components of the transmission line. 

• Establish guidelines for acceptable ranges of input data such as damping, and evaluate 

the sensitivity of the results to these input values. 

• Provide guidelines on modeling issues, such as the number of elements required to 

represent the conductor and the adequate time step for different types of analysis. 
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APPENDIX A - DYNTRN OBJECT PROTOTYPES 

A.1 Matrix and Vector Classes 

Matrix Class 
class MATRDCrpublic CObject 
{ 
/* Variables */ 
protected: 

double *beg; 
public: 

int row,col,band; 
/^Functions*/ 

MATRIX (): beg(NULL) {} 
MATRIX (int r,int c); 
-MATRKO; 
void Create(int r, int c); 
void CreateSBand(int r,int b); 
void DestroyO; 
DECLARE_SERIAL(MATRIX) 
virtual void Serialize(CArchive& archive); 
MATRIX (const MATRIX& MatSrc); 
MATRIX &operator = (const MATRIX &M2); 
MATRIX &operator = (double *di); 
MATRIX &operator += (const MATRIX &M1); 
MATRIX &operator -= (const MATRIX &M1); 
MATRIX (feoperator *= (const MATRIX &M1); 
MATRIX &operator *= (double d); 
VECTOR operator [] (int c) const; 
BOOL IsEmptyO const; 
MATRIX operator - (); 
void Add(const MATRIX &M1,const MATRIX &M2); 
void Sub0ract(c0nst MATRIX &M1,const MATRIX &M2); 
void Multiply(const MATRIX &M1,const MATRIX «&M2); 
void Multiply(const MATRIX &M1,double d); 
void ClearO; 
BOOL operator = (const MATRIX &M) const; 
BOOL operator != (const MATRIX &M) const; 
void IDMATRKO; 
void MatProduct(VECTOR &V); 
double GetD(int irow,int icol); 
double& PutIJ(int irow.int icol); }; 
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// Other MATRIX Operations not memebers of the MATRIX class 
MATRIX operator + (const MATRIX &M1, const MATRIX &M2); 
MATRIX operator - (const MATRIX &MI, const MATRIX &M2); 
MATRIX operator * (double d,const MATRIX &M1); 
MATRIX operator * (const MATRIX &M1,double d); 
MATRIX operator * (const MATRIX &M1,const MATRIX &M2); 
VECTOR operator * (const MATRIX &M1,const VECTOR &V1); 
void Insert(MATRIX &Main,const MATRIX &Part,int Istart,int Jstart); 
void Insert(MATRIX &Main,const VECTOR &Part,int Istart,int Jstart); 
void AddInsert(MATRIX &Main,const MATRIX &Part,int Istart,int Jstart); 
void Extract(const MATRIX& Main,MATRIX& Part,int Istart,int Jstart); 
void Extract(const MATRIX& Main,VECTOR& Part,int Istart,int Jstart); 
double Trace(const MATRIX &M); 
double Trace2(const MATRIX &M); 
double Norm(const MATRIX &M); 
MATRIX Transp(const MATRIX &M2); 

Square Banded Matrix Class 
class BMATRIXrpublic CObject 
{ 
/* Variables */ 
protected: 

double *beg; 
public: 

int row,band; 
/* Functions */ 

BMATRIX (): beg(NULL) {} 
BMATRJX (int r,int b); 
-BMATRIXO; 
void Create(int r, int b); 
void DestroyO; 
DECLARE_SERIAL(BMATRIX) 
virtual void Serialize(CArchive& archive); 
BMATRIX (const BMATRIX& MatSrc); 
BMATRIX &operator = (const BMATRIX &M2); 
BMATRIX (feoperator += (const BMATRIX &M1); 
BMATRIX &operator -= (const BMATRIX &M1); 
BMATRIX &operator *= (double d); 
BOOL IsEmptyO const; 
BMATRIX operator - (); 
void Add(const BMATRIX &M1,const BMATRIX &M2); 
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void Subtract(const BMATRDC &M1,const BMATRDC &M2); 
void Multiply(const BMATRDC &M1,double d); 
void ClearO; 
voidlDMATRKO; 
int GetStart(int irow) const; 
double GetNU(int irow,int icol) const; 
double &PutNU(int irow,int icol); 
double GetUCint irow,int iband) const; 
double& PutU(int irow,int iband); 

}; 

// Other BMATRIX Operations not members of class BMATRIX 
BMATRIX operator + (const BMATRIX &M1, const BMATRIX &M2); 
BMATRIX operator - (const BMATRIX &M1, const BMATRIX &M2); 
BMATRIX operator * (double d,const BMATRIX &M1); 
BMATRIX operator * (const BMATRIX &M1,double d); 
VECTOR operator • (const BMATRIX &M1, const VECTOR &V1); 
void Insert(BMATRIX &Main,const MATRIX «&Part,int Istart,int Jstart); 
void AddInsert(BMATRIX &Main,const MATRIX &Part,int Istart,int Jstart); 
void Extract(const BMATRIX& Main,MATRIX& Part,int Istart,int Jstart); 
void Extract(const BMATRIX& Main,BMATRIX& Part,int Istart,int Jstart); 

Vector Class 
class VECTORrpublic CObject 
{ 
/* Variables */ 
protected: 

double *beg; 
public: 

int row; 
/* Functions */ 

VECTOR (): beg(NULL) {} 
VECTOR (int r); 
-VECTORO; 
virtual void Create(int r); 
void DestroyO; 
DECLARE_SERIAL(VECTOR) 
virtual void Serialize(CArchive& archive); 
VECTOR (const VECTOR& VecSrc); 
BOOL IsEmptyO const; 
VECTOR &operator = (const VECTOR &V2); 
VECTOR &operator = (double *di); 
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VECTOR &operator += (const VECTOR &V1); 
VECTOR &operator -= (const VECTOR &V1); 
VECTOR &operator *= (double d); 
VECTOR operator - (); 
void Add(const VECTOR &Vl,const VECTOR &V2); 
void Subtract(const VECTOR &V1, const VECTOR &V2); 
double Getl(int irow) const; 
double«& Putl(int irow); 
void ClearO; 
BOOL operator = (const VECTOR &V) const; 
BOOL operator != (const VECTOR &V) const; 

}; 

// Other vector operations not members of VECTOR class 
VECTOR operator + (const VECTOR &V1,const VECTOR «&V2); 
VECTOR operator - (const VECTOR &V1,const VECTOR &V2); 
VECTOR operator * (double d,const VECTOR &V1); 
VECTOR operator * (const VECTOR &VI,double d); 
double operator * (const VECTOR &V1,const VECTOR &V2); //SCALAR PRODUCT 
VECTOR Mult(const VECTOR &VL const VECTOR &V2); 
void Insert(VECTOR &Main,const VECTOR &Part,int Istart); 
void AddInsert(VECTOR &Main,const VECTOR &Part,int Istart); 
void Extract(VECTOR &Main, VECTOR &Part,int Istart); 
double Norm(const VECTOR &V); 
double INorm(const VECTOR &V); 

3D Vector Class 
class GVECTOR : public CObject 
{ 
// Variables 
protected: 

VECTOR m_XYZ; // Vector containing the coordinates 
public: 
//Functions 

GVECTORO : m_XYZ(3) {} 
GVECTOR (const GVECTOR& GVecSrc); 
-GVECTORO {} 
DECLARE_SERIAL(GVECTOR) 
virtual void Serialize(CArchive& archive); 
void PutGVECTOR(double *xyzinp); 
void AddGVECTOR(doubIe *xyzinp); 
void GetGVECTOR(double *xyzout); 
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friend GVECTOR operator (const GVECTOR &Vl,const GVECTOR &V2); 
void GetDirCos(CSYS* pcs,doubIe &cl, double &c2, double &c3); 
II Transfer from one Csys to another 
GVECTOR TransfCsys(CSYS *p01d, CSYS *pNew); 
GVECTOR FTransfCsys(CSYS *p01d, CSYS »pNew); //Force version 
// Transfer to Global System 
GVECTOR TransfroGlobal(CSYS» pOld); 
GVECTOR FTransfToGlobal(CSYS* pOld); // Force version 
// Transfer From Global System 
GVECTOR TransfFromGlobal(CSYS* pNew); 
GVECTOR FTransfFromGlobal(CSYS* pNew); // Force version 
operator VECTOR () const; 
GVECTOR& operator = (const VECTOR &V1); 
GVECTOR& operator = (const GVECTOR &G1); 
GVECTOR& operator -= (const GVECTOR &G1); 
GVECTOR& operator += (const GVECTOR &G1); 
GVECTOR& operator -= (const VECTOR &V1); 
GVECTOR& operator += (const VECTOR &V1); 
void Subtract(const GVECTOR &G1,const GVECTOR &G2); 
void Add(const GVECTOR &Gl,const GVECTOR &G2); 
void Subtract(const GVECTOR &G1,const VECTOR &V2); 
void Add(const GVECTOR &G1,const VECTOR &V2); 
double Getl(int irow) const; 
double& Putl(int irow); 
void ZeroO; 
// Change a GVECTOR to a device context point 
void ToTVECTOR(TVECTOR &tl); 
void TextSerialize(fstream & HO.int RW) ; 

A.2 Coordinate System Class 

Coordinate Svtem Class 
//All Coordinate Systems are referenced 
// internally to the Global Coordinate system 
class CSYS : public CObject 
{ 
/* Variables */ 
public: 

GVECTOR X; 
GVECTOR Y; 
GVECTOR Z; 
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GVECTOR origin; 
MATRIX TRANS; 

public: 
!* Functions */ 

CSYSQ; 
-CSYSO; 
DECLARE_SERIAL(CSYS) 
virtual void Serialize(CArchive& archive); 
//Different ways to define the goordinate system 
void GenCSYS(GPOINT &po,GVECTOR &ax,GVECTOR &ay,GVECTOR &az); 
void GenCSYS_0_Px_Pxy(GP0INT &po,GPOINT &px,GPOINT &pxy); 
void GenCSYS_0_Px_Pz(GP0INT &po,GPOINT &px,GPOINT «&pz); 
void GenCSYS_0_Px_Ay(GP0INT &po,GPOINT &px,GVECTOR &ay); 
MATRIX& GetTransfO {returnTRANS;} 

A.3 Displacement, Rotation, Force and Moment Classes 

Displacement Class 
class DISP :public GVECTOR 
{ 
/* Variables */ 
public: 

BOOL FixCode[3]; 
public: 
/* Functions */ 

DISPO; 
-DISPQ {} 
DECLARE_SERIAL(DISP) 
virtual void Serialize(CArchive& archive); 
void GetRDISP(double* rdisp); 
DISP& operator = (const VECTOR &V); 
DISP& operator = (const DISP &G); 
void TextSerialize(fstreani & FIO,int RW); 

} ;  

Rotation Class 
class ROTAT :public GVECTOR 
{ 
/* Variables */ 
public: 
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BOOLFixCode[3]; 
/* Functions •/ 

void C)utOmega(VECTOR &Omega) const; 
void InOmega(const VECTOR &Omega); 
void OutAux(MATRIX &A); 
void InAux(const MATRIX &A); 
void InTrans(const MATRIX &T); 
void OutTrans(MATRIX &T); 
ROTATO; 
-ROTATO{} 
DECLARE_SERIAL(ROTAT) 
virtual void Serialize(CArcliive& archive); 
void FDump(ofstream «&FOut) const; 
void GetRROTAT(double *jrest); 
void ChangeCoord(ROTAT«& nwrotat, CSYS* OId,CSYS* New); 
ROTAT& operator = (const VECTOR &V); 
ROTAT& operator = (const ROT AT &G); 
friend ROTAT operator + (const ROTAT &Rl,const ROTAT &R2); 
void TextSerialize(fstream & F10,int RW); 

}; 

// other functions related to the rotation class, but not members of the class 
void OutAuxO(MATRIX &A,const VECTOR &w); 
void InAuxO(const MATRIX &A, VECTOR &w); 

Force Class 
class FORCE ipublic GVECTOR 
{ 
/* Functions */ 
public: 

FORCEO {} 
-FORCEO {} 
DECLARE_SERIAL(FORCE) 
virtual void Serialize(CArchive& archive); 
void GetFORCE(double •jloads); 
FORCE& operator = (const VECTOR &V); 
FORCE& operator = (const FORCE &G); 
void TextSerialize(fstream & FIO,int RW); 

}; 
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Moment Class 

class MOMENT :public GVECTOR 
{ 
/• Functions */ 
public: 

MOMENTO {} 
-MOMENTO {} 
DECLARE_SERIAL(MOMENT) 
virtual void Serialize(CArchive& archive); 
void GetMOMENT(double *jloads); 
MOMENT& operator = (const VECTOR &V); 
MOMENT& operator = (const MOMENT &G); 
void TextSerialize(fstream & FIO,int RW); 

};  

A.4 Load and Load History Classes 

Nodal Load Class 
class NLOAD : public CObject 
{ 
/* Variables */ 
public: 

FORCE m_force; 
MOMENT m_moment; 
DISP m_disp; 
ROTAT m_rotat; 
int m_Defined; 

/* Functions */ 
NLOADQ; 
NLOAD (const NLOAD& NLDSrc); 
-NLOADO{} 
DECLARE_SERIAL(NLOAD) 
virtual void Serialize(CArchive& archive); 
NLOAD &operator = (const NLOAD &NL1); 
friend NLOAD operator - (const NLOAD &ldl, const NLOAD &ld2); 
friend NLOAD operator + (const NLOAD &ldl, const NLOAD &ld2); 
friend NLOAD operator * (double dl, const NLOAD &ld2); 
void TextSeriaIize(fstream & FlO.int RW); 

};  
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Nodal Load History Class 
class NHLOAD : public CObject 
{ 
/* Variables */ 
public: 

CString m_Name; 
COb Array m_Loads; 
double in_STime; 
double ni_ETime; 
double m_ITime; 

/* Functions */ 
NHLOADO; 
-NHLOADQ; 
DECLARE_SERIAL(NHLOAD) 
virtual void Serialize(CArchive& archive); 
void SetLoad(int Index, NLOAD nload); 
NLOAD GetLoad(double tm); 
NLOAD InterpoIateLd(int plnd,int iiInd,double tm); 
void AdjustTScale(double STiine,double ETime.double ITime); 
void ClearArrayO; 
NHLOAD (feoperator = (const NHLOAD &NL1); 
void TextSerialize(fstream & FIO,int RW); 

};  

Element Load Class 
class ELLOAD : public CObject 
{ 
/* Variables */ 
public: 

II Force values to discribe the element forces 
GVECTOR m_VaI[2]; 
int m_Defined; 

/* Functions •/ 
ELLOADO; 
ELLOAD (const ELLOAD& ELDSrc); 
-ELLOADO {} 
DECLARE_SERIAL(ELLOAD) 
virtual void Serialize(CArchive& archive); 
ELLOAD &operator = (const ELLOAD &EL1); 
void TextSeriaIize(fstream & FTO,int RW); 

} ;  
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Element Load History Class 
class ELHLOAD : public CObject 
{ 
/* Variables */ 
public: 

CString m_Name; 
//An Array to describe the loads 
COb Array m_Loads; 
// Variables to describe the time scale 
double m_STime; 
double m_ETime; 
double in_ITime; 
int m_LCoord; //Local or Global 

/* Functions */ 
ELHLOADO; 
-ELHLOADO; 
DECLARE_SERIAL(ELHLOAD) 
virtual void Serialize(CArchive& archive); 
void SetLoad(int Index, ELLOAD elload); 
ELLOAD GetLoad(double tm); 
ELLOAD InterpoIateLd(int plnd,int nInd,double tm); 
void AdjustTScale(double STime,double ETime,double ITime); 
void ClearArrayO; 
ELHLOAD &operator = (const ELHLOAD &EL1); 
void TextSerialize(fstream & FIO,int RW); 

};  

A.5 Node Class 

Node Class 
class NODE : public CObject 
{ 
/* Variables */ 

int D0FMap[6]; 
int FORMap[6]; 
public: 
CString m_Name; 
//Drawing VECTORS 
TVECTOR DR_Ocoord; 
TVECTOR DR_Dcoord; 
//Nodal Load 
CString nhload; 
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NHLOAD* pnhload; 
// Coordinates 
GVECTOR ni_nOcoord; 
GVECTOR m_ncoord; 
//Force and moment 
FORCE m_nforce; 
MOMENT m_nmoment; 
FORCE m_nFForce; 
FORCE m_nINForce; 
MOMENT in_nFMoment; 
MOMENT in_nINMoment; 
//Displacements and rotations 
ROTAT m_iirotat; 
DISP m_ndisp; 
DISP m_nSdisp; 
ROTAT m_nINIrotat; 
DISP m_nINIdisp; 
// Iterational values - used for non-linear iterations 
ROTAT m_nrrRrotat; 
DISP m_nITRdisp; 
// Translational velocity and acceleration 
GVECTOR m_nDVel; 
GVECTOR m_nDAcc; 
//Angular velocity and Acceleration 
GVECTOR m_nRVel; 
GVECTOR m_nRAcc; 

/* Functions */ 
NODEQ {} 
~NODE() {} 
DECLARE_SERIAL(NODE) 
virtual void Serialize(CArchive«&: archive); 
NODE& operator = (const NODE &N); 
void GetJloads(double* jloads, double Ctm); 
BOOL IsFixed(int i); 
void GetJrest(double* jrest,double* ijrest, double Ctm); 
void InputMap(int* dof,int* fore); 
void GetMap(int* dof,int* fore); 
void UpdateDisp(VECTOR& V); 
void UpdateDynNodeO; 
void RecoverNodeO; 
void OutDisp(ofstream& 0,int spc.int wd); 
GVECTOR GetDispCoord(int DType); 
void PutTVECTOR(int DType,TVECTOR &pl); 
void ResolvePointersO; 
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void CalcNodeDrawExtentsO; 
double GetNodeVal(int PType,int PDir); 
void TextSerialize(fstream & FIO,int RW); 
void SaveNodeResults(ofstream &FOut); 
void LoadNodeResults(ifstream &FIn, int Ref); 

A.6 Material and Section Properties Classes 

Material Class 

class MATERIAL: public CObject 
{ 
/* Variables */ 

double Val[20]; 
public: 
CString m_Name; 

/* Functions */ 
MATERIALO {} 
-MATERIALO {} 
DECLARE_SERIAL(MATERIAL) 
virtual void Serialize(CArchive& archive); 
double GetVal(int Lab); 
double& PutVal(int Lab); 
void TextSerialize(fstream & FIO,int RW); 

Element Section Properties Class 
class ELPROP : public CObject 
{ 
/* Variables */ 

double Val[20]; 
public: 
CString m_Name; 

/* Functions */ 
ELFROPO {} 
-ELPROPO {} 
DECLARE_SERIAL(ELPROP) 
virtual void Serialize(CArchive& archive); 
double GetVal(int Lab); 
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doubIe& PutVaI(int Lab); 
void TextSerialize(fstream & FIO,int RW); 

}; 

A.7 Classes to Represent Arrays 

A Class to Represent an Array of Nodes 
class CNodeArray : public CObject 
{ 
/* Variables */ 

NODE* m_pNode; 
int m_nNodes; 
public: 

/* Functions •/ 
CNodeArrayO; 
-CNodeArrayO; 
int GetNumO; 
void PutNodes(int NNums); 
void ClearNodesO; 
NODE* GetNode(int pos) {return m_pNode+pos;} 
DECLARE_SERIAL(CNodeArray) 
void Assign(const CNodeArray &ANode); 
virtual void Serialize(CArchive& archive); 

} :  

A Class to Represent an Array of Geometric Vectors 
class CGVectorArray: public CObject 
{ 
/• Variables •/ 

GVECTOR* m_pGV; 
intm_nGV; 

public: 
/* Functions */ 

CGVectorArrayO; 
-CGVectorArrayO; 
int GetNumO; 
void Initiate(int NNums); 
void ClearO; 
GVECTOR* Get(intpos) {return m_pGV+pos;} 
DECLARE_SERIAL(CGVectorArray) 
virtual void Serialize(CArchive& archive); 
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}; 

A Class to Represent an Array of Real Numbers 
class CDoubleArray: public CObject 
{ 
/* Variables */ 

double* m_pd; 
int in_nd; 
public: 

/* Functions */ 
CDoubleArrayO; 
-CDouble ArrayO; 
int GetNumO; 
void Initiate(int NNums); 
void ClearO; 
double Get(intpos) {return *(m_pd+pos);} 
double& Put(int pos) {return *(m_pd+pos);} 
DECLARE_SERIAL(CDoubleArray) 
// Override the Serialize function 
virtual void Serialize(CArchive& archive); 
void Assign(const CDoubleArray &D Array); 

A.8 Classes Representing Structural Elements 

Structural Element Class (Abstract Class) 
class ELEMENT : public CObject 
{ 
/* Variables */ 

public: 
//Name and Type 
double ftenip[5]; 
int itemp[5]; 
CString m_Name; 
int m_EType; 
CStringArray EINodes; 
NODE* pElNodes[3]; 
CString ElMat; 
MATERIAL *pElMat; 
CString ElProp; 
ELPROP *pElProp; 

// Node Names 
// Node Pointers 
// Material Name 
//Material Pointer 
// Section Property Name 
//Section Property Pointer 
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CS tring ElHload; 
ELHLOAD *pElffload; 
CSYS ElLocCsys; 
double ni_Length; 
double m_CurTemp; 
int m_nSElem; 
int m_SLoc; 
int m_ELoc; 
double MDamp,KDamp; 
public: 

/* Functions */ 
ELEMENTO; 
-ELEMENTO {} 
DECLARE_SERIAL(ELEMENT) 
virtual void SeriaIize(CArchive& archive); 
protected: 
virtual void Stiff(MATRIX &K,MATRIX& M,MATRIX &C) {} 
virtual void GlobS tiff (MATRIX &K,MATRIX& M,MATRIX &C) {} 
virtual void CalculateGlobalForces(VECTOR &TotalF) {} 
public: 
virtual void Initiate(); 
virtual void ResolvePointers(); 
virtual void SetELoad(double Ctm) {} 
virtual void PutElemMatrices() {} 
virtual void UpdateElement() {} 
virtual void UpdateDynElemO {} 
virtual void RecoverElemO {} 
virtual void OutELEM() {} 
virtual void DrawElem(int DType) {} 
virtual void CalcElemDrawExtents() {} 
virtual void PrepareDrawElem(int DType) {} 
virtual void OutDisp(ofstream& O) {} 
virtual void OutForc(ofstream& O) {} 
virtual double GetElemVal(int PType,int PDir,int NNum) {return 0;} 
virtual void TextSerialize(fstream & FIO,int RW); 
virtual void SaveElmResults(ofstreani &FOut) {} 
virtual void LoadElmResults(ifstream &FIn, int Ref) {} }; 

Beam Element Class 
class BEAMl:public ELEMENT 
{ 
/* Variables */ 

public: 

//LoadHistory Name 
//Load History Pointer 
//Local Coordinate System 

// Element Length 
//Current Temperature 
//Number of Internal Elements 
// Load Start Location 
//Load End Location 
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NODE Endl; 
NODE End2; 
CSYS ESys; 
double FinLength; 

/* Functions */ 
BEAMIQ; 
-BEAMIQ {} 
DECLARE_SERIAL(BE AM 1) 
virtual void SeriaIize(CArchive«S: archive); 
protected: 
virtual void Stiff(MATRK &K,MATRIX& M,MATRIX &C); 
virtual void GlobStiff(MATRDC &K,MATRDC& MJVIATRK &C); 
virtual void CaIculateGlobalForces(VECTOR &TotalPO; 
void ObtainLocRotTrans(MATRIX &TL1 .MATRIX &TL2); 
void UpdateElemCoord(const MATRIX &TL1,const MATRIX &TL2); 
void CalcDeform(VECTOR &U1, VECTOR &U2); 
void CalcForceNLO; 
void CalcForceLO; 
public: 
virtual void Initiate(); 
virtual void ResolvePointers(); 
virtual void SetELoad(double Ctm); 
virtual void PutElemMatrices(); 
virtual void UpdateEIement(); 
virtual void UpdateDynElem(); 
virtual void RecoverElem(); 
virtual void OutELEM() {} 
virtual void DrawElem(int DType); 
virtual void CalcEleniDrawExtentsO; 
virtual void PrepareDrawElein(int DType); 
virtual void OutDisp(ofstreain& O); 
virtual void OutForc(ofstream& O); 
virtual double GetElemVal(int PType,int PDir.int NNum); 
virtual void TextSerialize(fstream & FlO.int RW); 
virtual void SaveElmResults(ofstreain &FOut); 
virtual void LoadElmResults(ifstream &FIn, int Ref); }; 

Galloping Information Structure 
typedef struct 
{ 

int IsGalloping; // Is Galloping Activated 
int GallopMode; // Which Galloping Mode 
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double HTens; 
double GallopWt; 
double LeXambda2; 
II Arrays J [OJ^s In-plane, [1J= 
double IPD_NatFreq; 
double NatFreq[2]; 
double GallopFreq[2]; 
double IPhase[2]; 
double GAmp[2]; 

} SGallopInf; 

Cable Element Class 
class CABLE : public ELEMENT 
{ 
/* Variables */ 

protected: 
CNodeArray IntNod; 
CDouble Array T; 
CDoubleArray TInd; 
CGVectorArray ModeRatio; 
FORCE m_IEndl,m_FEndl; 
FORCE m_IEnd2,m_FEnd2; 
// Matrices: 1= Intemal DOF, 2=Extemal DOF 

II Horizontal Tension 
II Weight / unit length 
II Mode spahes 'parameters 

•• Out-of-plane 
II Normalized In-plane Nat. Frequency 
II Natural Frequencies 
II Galloping frequencies 
II Galloping Initial phases 
II Galloping Amplitudes 

II Internal Nodes 
II Intemal Tensions 
II Intemal Tension Indicators 
II Mode Multipliers 

BMATRIXK11,M11,C11; 
MATRIX K12,M12,C12; 
MATRIX K22,M22,C22; 
VECTOR DcDiag; 
CSYS GravityCsys; 
int m_Solve; 
public; 
int m_IsStringing; 
double m_STension; 
double m_STemp; 
double m_SLoad; 
double m_Span,m_HSpan,m_VSpan; 
int IntDOF; 
SGallopInf ni_GallopInf; 
public; 

/* Functions */ 
CABLED; 
-CABLEO {} 
DECLARE_SERIAL(CABLE) 
virtual void Serialize(CArchive«fe archive); 

II Intemal DOF 
II Intemal - External DOF 
II External DOF 
II Diagonal of Decomposed Matrix 
I I Gravity Coordinates 

II Stringing Information or Original Length 
II Stringing Tension 
II Stringing Temperature 
II Stringing Load 
II Spans, Hz. Vt. and Inclined 
II Intemal DOF 
II Galloping Information 
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protected: 
virtual void Stiff(MATRIX &K,MATRIX«fe M^IATRK &C); 
virtual void GlobStiffCMATRIX &K,MATRIX& M,MATRIX &C); 
virtual void CalculateGlobalForces(VECTOR &TotalF); 
virtual void GetIntForce(VECTOR& IntForce); 
virtual void CalcMassQ; 
void CalcDampO; 
virtual void CabSolve(VECTOR& EForce); 
virtual void CabStiff(); 
void UpdateIncForceDyn( VECTOR &F); 
void UpdateTotalForceDyn( VECTOR &F); 
void UpdateIncDyn21 (VECTOR &F); 
void GenlntNodesQ; 
virtual void CalcIntStiffQ; 
void ObtainElemLoad(VECTOR &F); 
void ObtaiiiInertiaForce(VECTOR &FAcc); 
void ObtainDampForce(VECTOR &FVel); 
void ObtainIncEleniLoad(VECTOR &F); 
void ObtainInitialIntVectors(VECTOR &I_Displ, VECTOR &I_Accl, VECTOR 
&I_Vell); 
void ObtainIiiitialExtVectors(VECTOR &I_Disp2,VECTOR &I_Acc2,VECT0R 
&I_Vel2); 
void ResolvelntemalPointersO; 
void CalculateNatFreqO; 
void CalculateModeDispO; 
void CalcStaticDisp(double sld); 
void CalcCatFunc(VECTOR& ZF,MATRIX &Jac,doubIe a_Wt, 

double a_LO,double a_H,double a_V,int a_mode); 
void CalcHVFromLCdouble a_LO,double a_Wt,double* a_HV); 
double CalcLFromH(double a_H,double a_Wt); 
void CalcGalopDisp(double Ctm); 
virtual void CabGallopO; 
void CreatelntemalMatricesO; 
void DestroylntemalMatricesO; 
friend double GallopFreqEq(double a_freq, double* AuxVal, int AuxNum); 
friend double AppHEq(double a_H, double* AuxVal, int AuxNum); 
public: 
virtual void Initiate(); 
virtual void ResolvePointers(); 
virtual void SetELoad(double Ctm); 
virtual void PutElemMatrices(); 
virtual void UpdateEIement(); 
virtual void UpdateDynElem(); 
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virtual void RecoverElem(); 
virtual void OutELEMO {} 
virtual void DrawEleni(int DType); 
virtual void PrepareDrawElem(int DType); 
virtual void CalcElemDrawExtentsQ; 
virtual void OutDisp(ofstream& O); 
virtual void OutForc(ofstream& O); 
virtual double GetElemVal(int PType,int PDir,int NNum); 
virtual void TextSerialize(fstream & FIO,int RW); 
virtual void SaveElinResults(ofstream &FOut); 
virtual void Lx)adElinResults(ifstream &FIn, int Ref); 

Two-Nodes Cable Class 
class CABLE2 : public CABLE 
{ 
/* Functions */ 

public: 
CABLE2(); 
-CABLE2() {} 
DECLARE_SERIAL(CABLE2) 
virtual void Serialize(CArchive& archive); 
protected: 
virtual void CalcMass(); 
virtual void CabSolve(VECTOR& EForce); 
virtual void CabGallopO; 
virtual void CabStiff(); 
virtual void CalcIntStiff(); 
virtual void SetELoad(double Ctm); 
virtual void DrawElem(int DType); 
virtual void PrepareDrawElem(int DType); 
virtual void CalcElemDrawExtents(); 

} ;  

Cable Type Class rFuture Extension't 
class CABLES : public CABLE 
{ 
/* Functions */ 

public: 
CABLESQ; 
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-CABLE3() {} 
DECLARE_SERIAL(CABLE3) 
virtual void Serialize(CArchive& archive); 
protected: 
virtual void CalcMass(); 
virtual void CabSolve(VECTOR& EForce); 
virtual void CabGallopO; 
virtual void CabStiff(); 
virtual void CalcIntStiff(); 
virtual void SetELoad(double Ctm); 
virtual void DrawElem(int DType); 
virtual void PrepareDrawElem(int DType); 
virtual void CalcElemDrawExtents(); 

TRUSS Element Class 
class TRUSS : public ELEMENT 
{ 
/* Variables */ 

double T; I I Tension 
public: 
int m_TOnly; 

/* Functions */ 
TRUSSQ; 
-TRUSSO {} 
DECLARE_SERIAL(TRUSS) 
virtual void Serialize(CArchive& archive); 
protected: 
virtual void Stiff(MATRIX &K,MATRIX& M,MATRIX &C); 
virtual void GlobStiff(MATBaX &K,MATRIX& M,MATRIX &C); 
virtual void CalculateGlobalForces(VECTOR &TotalF); 
public: 
virtual void Initiate(); 
virtual void ResolvePointers(); 
virtual void SetELoad(double Ctm); 
virtual void PutElemMatricesO; 
virtual void UpdateElement(); 
virtual void UpdateDynElem() {} 
virtual void RecoverEIem() {} 
vinual void OutELEMO {} 
virtual void DrawElem(int DType); 
virtual void PrepareDrawElem(int DType); 
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virtual void CalcElemDrawExtents(); 
virtual void OutDisp(ofstreani& O); 
virtual void OutForc(ofstream& O); 
virtual double GetElemVal(int PType,int PDir,int NNum); 
virtual void TextSerialize(fstreain & FIO,int RW); 
virtual void SaveElmResults(ofstream &FOut); 
virtual void LoadElniResults(ifstreain &FIn, int Ref); 

Spring Element Class 
class RSPRING: public ELEMENT 
{ 
/* Variables */ 

public: 
double m_Stiff; 
int m_RIter; 
double T; 
int m_DIRECTION; 

/* Functions */ 
RSPRINGO; 
-RSPRINGO {} 
DECLARE_SERIAL(RSPRING) 
virtual void Serialize(CArchive& archive); 
protected: 
virtual void Stiff(MATRIX &K,MATRIX& M,MATRIX &C); 
virtual void GlobStiff(MATRIX &K,MATRIXc& M,MATRIX &C); 
virtual void CalculateGlobalForces(VECTOR «&TotalF); 
public: 
virtual void Initiate(); 
virtual void ResolvePointers(); 
virtual void SetELoad(double Ctm); 
virtual void PutElemMatrices(); 
virtual void UpdateElement(); 
virtual void UpdateDynElemO {} 
virtual void RecoverElem() {} 
virtual void OutELEM() {} 
virtual void DrawElem(int DType); 
virtual void PrepareDrawElem(int DType); 
virtual void CalcElemDrawExtents(); 
virtual void OutDisp(ofstream& O); 
virtual void OutForc(ofstreani& O); 
virtual double GetElemVal(int PType,int PDir,int NNum) {return 0;} 



www.manaraa.com

98 

virtual void TextSerialize(fstream & FIO,int RW); 
virtual void SaveElmResults(ofstream &FOut); 
virtual void LoadElmResults(ifstream &FIn, int Ref); 

A.9 A Class Representing the Global Structure, CDyntmDoc 

Main Structure Class 
class CDyntmDoc : public CDocument 
{ 

public: 
CDyntmDocQ; 
-CDyntmDocO; 
DECLARE_SERIAL(CDyntniDoc) 
public: 
CString m_Name; 
OUTLIST m_ResList; 
ROOpt m_OutOption; 
RGOpt m_GOption; 
int m_OutCounter; 
protected; 
ofsuream out; 
public: 
ofstream dbout; 
ofstream outDl; 
ofstream outD2; 
UINT SolMsg; 
UINT DrawMsg; 
UINT GraphMsg; 
public: 
// Dynamic Parameters 
BOOL Dynamic; 
BOOL NonLinear; 
double Delta_t; 
double Alpha; // Newmark parameters Alpha and Delta 
double Beta; 
double Delta; 
double rrime; 
double CTime; 
double FTime; 
double CTol; 
double m_CabTol; 



www.manaraa.com

99 

double Gravity; 
double IntCoeff[6]; // Dynamic Coefficients 
public: 
CSYS *pglob; 
ELLOAD *pel; 
public: 
int NNodes; 
// Object Lists 
CMapStringToOb Materials; 
CMapStringToOb ElemProperties; 
CMapStringToOb Nodes; 
CMapStringToOb Elements; 
CMapStringToOb Elloads; 
CMapStringToOb NIoads; 
// Temporary objects to carry time steps until the load transactions are confirmed 
ELHLOAD tmpehld; 
NHLOAD tmpnhld; 
//Drawing options 
public: 
CMetaFileDC *pMFile; 
HMETAFILE HMFile; 
float m_DxMax; 
float m_DyMax; 
float m_DxMin; 
float m_DyMin; 
double m_DAngX,m_DAngZ; 
double m_DAngXInc,m_DAngZInc; 
double Sin_AngX,Sin_AngZ; 
double Cos_AngX,Cos_AngZ; 
double m_DScale; 
int m_DWidth; 
int m_DHeight; 
// Solution Attributes 
public: 
int Niter; 
VECTOR IntForceVector; 
VECTOR ResForceVector; 
VECTOR EqForceVector; 
VECTOR INForceVector; 
VECTOR FNForce Vector; 
VECTOR ElForce Vector; 
VECTOR ForceVector; 
VECTOR RestrVector; 
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VECTOR TotalVector; 
VECTOR SoIutionVector; 
VECTOR IDisp Vector; 
VECTOR FDispVector; 
VECTOR VelVector; 
VECTOR AccVector; 
SSMATRDC GlobalStiff; 
SSMATRDC GlobalMass; 
SSMATRIX GlobalDamp; 
//Solution Operations 
public: 
void CreateSolutionVectors(int NNum); 
void MapNodesO; 
void CalcDynamicCoeffO; 
void BuildElementMatricesO; 
void CalculateEqStiffO; 
void CalculateEqForcesO; 
void ApplyIncNodalLx)ads(); 
void ApplyNodalRestrO; 
void SolveStiff(VECTOR &RHVector); 
void Updates tructureO; 
void UpdateDynamicO; 
void RecoverSolutionO; 
void ObtainResidualO; 
void SetElementLoads(double Ctm); 
void Soive(void* Ptr,HWND PWnd); 
public: 
BOOL MaterialLookup(const char *key, MATERL\L*& mat); 
BOOL PropertiesLoolMp(const char *key, ELPROP*& prop); 
BOOL NodesLookup(const char *key, NODE*& node); 
BOOL EIementsLookup(const char *key, ELEMENT*& element); 
BOOL ElloadsLookup(const char *key, ELHLOAD*& elload); 
BOOL NloadsLookup(const char *key, NHLOAD*& nload); 
virtual void Serialize(CArchive& ar); 
virtual void DeleteContents(); 
//Drawing Functions and output 
public: 
void OpenMemoryMetaFileO; 
void CloseMemoryMetaFileO; 
void CalcDrawExtentsO; 
void PrepareDraw(int DType); 
void Draw(HWND PWnd,int DType); 
void AdjustView(double AngX,double AngZ); 
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void ClearDraw(HWND Pwnd); 
void OutNodDispO; 
void OutEIemResO; 
void OutDynRes(ofstream &OutD); 
void TextExport(fstream & FIO); 
void TextImport(fstream & FIO); 
void SaveResults(ofstream &resfile); 
void Lx)adResults(ifstream &resfile); 
// Friend Functions belonging to Dialogs 
public: 
friend afx_msg void OnUpdateMatLabelO; 
public: 
virtual BOOL OnNewDocumentO; 
virtual BOOL OpenDocument(const char* pszPathName,HWND Pwnd); 
virtual BOOL OnSaveDocument(const char* pszPathName); 
public: 
void DestroyO; !/ delete all the document entities 

A. 10 Sparse Matrix Classes 

A Class to Represent an Element of a Row of a Sparse Matrix 
class RELEM: public CObject 
{ 
/* Variables */ 

public: 
int m_col; 
double ni_val; 
RELEM* m_next; 
RELEM* ni_prev; 

}; 

A ROWHEAD Class for Manging Rows of a Sparse Square Matrix SSMATRIX 
class ROWHEAD: public CObject 
{ 
/* Variables */ 

protected: 
int m_neiem; 
RELEM* m_beg; 
public: 

/* Functions */ 
ROWHEADO; 
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void DestroyO; 
-ROWHEADO; 
int IsEmptyO const; 
ElELEM* SearchCoI(RELEM*& prev,RELEM*& next,int col) const; 
void Put(const int col.const double val); 
void Mul(const int col.const double val); 
void Add(const int col,const double val); 
void Get(const int col,double& val) const; 
void Del(const int col); 
void Del(); 
void AddTo(ROWHEAD &R1,double ml); 
double Mult(const VECTOR &V1); 
RELEM* GetFirstO {return m_beg;} 
RELEM* GetNext(RELEM *eleni) { return elem->m_next;} 
RELEM* GetPrev(RELEM *elem) { return elem->m_prev;} 

A Sparse Square Matrix Class 
class SSMATRJK: public CObject 
{ 

/* Variables */ 
int m_row; 
ROWHEAD* m_rowhead; 

/* Functions */ 
public: 
SSMATRIXO; 
-SSMATRDCO; 
void Create(int row); 
void DesUroyO; 
void ClearO; 
void PutU(const int row,const int col,const double val); 
void AddU(const int row.const int col.const double val); 
void SubU(const int row,const int col,const double val); 
void MulU(const int row,const int col,const double val); 
double GetU(const int row,const int col) const; 
void DelU(const int row,const int col); 
void DelRow(const int i) { m_rowhead[i].Del();} 
void AddTo(SSMATRIX &SM1,double ml); 
friend VECTOR operator * (const SSMATRIX &SM1,const VECTOR &V1); 
void CholeskyDecompose(VECTOR& p); 
/ /  a - b x  
void CholeskyBackSub(VECTOR& p,VECTOR& b, VECTOR& x); 
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}; 

A.11 Classes Performing Output Operations 

Two-Dimensional Vector Class 
class TVECTOR 
{ 
/* Variables */ 

public: 
float x; 
float y; 

/• Functions */ 
TVECTORO {x=0; y=0;} 
void ToPoint(CPoint &pl); 

A Class to Represent a Defined Output Variable 
class OUTVAR : public CObject 
{ 
/* Variables */ 

public: 
int m_Type; 
CString m_Naine; 
int in_NNum; 
int ni_Par; 
int m_Dir; 
pub;lic: 

/* Functions */ 
OUTVARQ; 
-OUTVARQ {} 
DECLARE_SERIAL(OUTVAR) 
virtual void Serialize(CArchive& archive); 

A Class to Handle Output Storage 
class OUTLIST: public CObject 
{ 
/* Variables */ 

long m_pos[MAXOUT]; 
public: 
int max_index; 
OUTVAR in_var[VMAX]; 



www.manaraa.com

104 

CString m_ResName; 
CString m_VarName; 
OUTUSTO; 
-OUTUSTQ {} 
DECLARE_SERIAL(OUTLIST) 
float GetOutput(int index); 
void PutOutputO; 
virtual void Serialize(CArchive& archive); 
void LoadVariablesO; 
void StoreCurVariabIes(float tm); 
void PutTimesInMem(void far *MemPtr); 
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APPENDIX B - DYNAMIC STRUCTURAL EQUATIONS 

B.l General Dynamic Equation 

The incremental form of the dynamic equation of motion, from the beginning of a time 

step, n, to the end of the time step, n+1, can be expressed as : 

where, 

[M] = mass matrix, 

[C] = damping matrix, 

[K] = tangent stiffness matrix, 

{AU}= incremental acceleration vector, 

{ A0}= incremental velocity vector, 

{AU}= incremental deformation vector, 

{AF}= incremental force vector. 

The acceleration and velocity at the end of the time step, n+1, can be defined in terms of 

the acceleration, velocity, and displacement at beginning of the time step, n, using Newmark 

method [63], as follows: 

B.l 

B.2 

where, 

Ar is the time increment, a and 6 are integration parameters 

Newmark Equation B.2 can be written in the incremental form as follows; 
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am- a(^') 2a' " B.3 

Equation B.3 can be written as: 

a,{LU]„^, -a ,{U}„-a,{U]^ 

{AC/}„.,= a,[LU}^,,-a,{U]^-a,[U}^ 

where. 

1  S  1 1 6  6  , ,  ^0= r . a,= —— , a,= —— , ^3= — , a^= — , ^5= (A0(—-1) 
a(Ar)- a(AO " a(AO 2a a 2a 

By substituting Equation B.4 into B.l one can obtain the following equation: 

{a^m ^ a,[C\ + [K]) {Af/}„^, = {AF}„^, + 

MU]^^a,[U]„)  [M\ -  i .a ,{U]^^a,[U}^)  [C\  

Equation B.5 Can be written in the form [An,,{AC/}„^, = { where, 

{AF,^}„., = {AF}„^, + MU]„^a,[U]„) [M] - ^a,[U}„^a,[U}„) [q 

B.2 Incremental Newmark Method using Dynamic Condensation 

Dynamic condensation is used to eliminate the dynamic degrees of freedom associated 

with the internal nodes of a structural element. The cable element shown in Figure B.l is 



www.manaraa.com

107 

used to illustrate the condensation technique. The cable element consists of 11 nodes, two 

external nodes designated by the subscript 2 and nine internal nodes referenced by the 

subscript 1. 

D.O.F. designated by subscript 2 

L 

D.O.F. designated by subscript 1 

Figure B.l Dynamic Matrix Condensation 

The purpose of the condensation technique is to eliminate the internal degrees of 

freedom, DOF of the cable element, so that only the external nodes are included in the 

analysis. In this way the overall efficiency of the solution can be improved, by decreasing the 

total degrees of freedom of the structure. 

The dynamic equilibrium equations for the internal and extemal DOF. can be written as 

follows: 

^11 ^12 

^2\ ^72 

Af7, Cn C,2 AC/, AT,, AT,, 
< 

Af7, 
• + < 

AC/, 
" + <

1 

n-^i ^22 AC/, 2̂1 ^22 

AC/, 

AC/. B.5 
^•1  
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[M„]{At/,}„.,-[M„]{Af/,}„.,+[C23]{A£/,}„.,^[C„]{At/,}„,,+ 

The incremental acceleration and velocity at time t„+, can be eliminated from Equations 

B.6 and B.7 using Newmark incremental relations derived earlier (see Equation B.4). The 

resulting equations can be expressed as follows: 

By substituting Equation B.8 into Equation B.9 , the following equation is developed. 

[^22U{At/2}„., = {Ai='3.,}„., B.10 

where, 

[K„]„ ' [XJo - [A:,,]o([ii:„))o'[ii:,,]o 

B.ll 
{AF,),,= -[KJ,];, {AF,)„ 



www.manaraa.com

109 

where, 

{AF.}o= {AF.} + {a,Sf^,;\^a,[C.;\)[U,} + (fl,[A/J+a,[Q]){t/,} 

- {a,[M,^^a,[C,;[){U,] ^ ,]){€,] B.12 

/= 1,2 j= 1,2 
, - / 2 r ' =  1  
• -  l l  i / /=  2  

Notice that Equation B.l 1 is similar to the static condensation equation found in many 

text books. The only difference is the subscript D, which stands for dynamic, i.e. the dynamic 

equivalent. 
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APPENDIX C - TRANSFORMING ROTATION VECTORS 

To transform a rotation vector {0} ̂ from a coordinate system A to a new coordinate 

system B, one needs to perform the following steps: 

• Assume the rotation {0}A = '6A' ^A' where e is the unit vector in the direction {0 

and 101 is the norm of the vector {0}A. 

• Calculate another vector {to}a, such that {a)}A= tan (I0aI/2) * e^. 

0 

• Calculate a matrix, QA, where, 0 , and co^ =" 

0 

(Q. "'•^2^) 
Calculate a rotation matrix , T .  =  L  +  2  , where L is the 3X3 identity 

matrix. T^ represents the rotation matrix for the old coordinate system, A. 

• Transform TA to the new coordinate system B, by calculating Tg = [E]' T^ [E], where 

[E] is the transformation matrix from B to A. 

• Using TB, calculate the matrix Qg, and the vector (o^ using the equation: 

(Ts -Tb)  Q = _f— CO = 
® (l^TRACEiTg)) ® 

CO 'XB 

CO YB 

CO ZB 

• Finally, the rotation vector in the new coordinate system, {0 jg, can be calculated as: 

(")B 
{0}^= 2 atan(\(j3g\) ig, where e„= 

lUgl 
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APPENDIX D - ANALYTICAL VERIFICATION EXAMPLES 

D.l Example 1: Verification of the Beam Element 

Purpose; To verify the large displacement solution of a 3-D beam element subjected to static 
concentrated loads 

Loads; Concentrated forces and moments applied at point B. 

Fx 10,000 lb 

Fy 4,000 lb 

Fz -5,000 lb 

Mx 1000 Ib-in 

My 1000 Ib-in 

Mz 1000 Ib-in 

Force and moment directions 

My 

Fx Mx 

Properties; 
^ 2Q0 in. 

B 

A 2.0 in^ 

Ixx 100 in^ 

lyy 50 in'' 

Izz 50 in'^ 

E 29,000,000 psi 

M 0.3 

P 0.0007 Ib.secVin^ 

Results; Internal forces (lb) and moments (Ib-in) at point A: 

Method Fx Fy Fz Mx My Mz 

DYNTRN 10,000 4,000 5,000 999 915500 732600 

ANSYS 10,000 4,000 5,000 986 935570 748630 

Displacements (in) at point B: 

Method Ux Uy Uz Rotx Roty Rotz 

DYNTRN -0.255 6.741 -8.426 0.0018 0.0632 0.0506 

ANSYS -0.249 6.887 -8.6053 0.0017 0.0645 0.0517 
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D.2 Example 2: Verincation of the Truss Element 

Purpose; To verify the large displacement solution of a 3-D truss element subjected to static 
concentrated loads 

Loafis; Concentrated forces applied at point D 

Properties: 

Fx 100,000 lb 

Fy 400,000 lb 

Fz -500,000 lb 

A 2.0 in^ 

E 29E6 psi 

A Z 

C (0,0,100) B (0,100,0) 

(200.0,0) 

A (0,-100,0) 

Results; 

Member forces (lb) 
(positive = tension) 

Displacements at D (in) 

Method AD BD CD Ux Uy Uz 

DYNTRN -4.923E4 -9.248E5 1.124E6 -2.598 3.681 -14.082 

ANSYS -4.962E4 -9.261E5 1.126E6 -2.627 3.746 -13.972 

D.3 Example 3: Verification of the Spring Element 

Purpose: To verify the solution of a linear spring element subjected to static concentrated loads. 

Loads; Concentrated forces applied at point B, Fx = 10,000 lb. 

Properties; Stiffness, Kx = 10(X) lb/in Kx ® 

Results; Displacement, Ux, at B (in) 

DYNTRN 10 

Theory 10 
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D.4 Example 4: Verification of the Cable Element 

Purpose; To verify the large displacement solution of a cable element subjected to uniformly 
distributed loads. 

Loads; Uniformly distributed forces applied on the cable element. 

.Z 

Properties: 

Wy 0.3 lb/in 

Wz 0.4 lb/in 

: 

A 1 in* 

E 10E6 psi 

Lo 5999 in 

6000 in 

Results; Sags Sz, Sy, and S and cable tension at point A 

Method Sags Tension Method 

Sz Sy S T 

DYNTRN 112.195 84.147 140.24 16,030 

Theory [8] 111.77 83.827 139.712 16,160 

Purpose; 

Loads: 

D.5 Example 5; Verification of the Dynamic Time Integration 

To verify the large displacement dynamic solution, using time integration. 

Concentrated force, Fz applied at point B as shown in the following figure. 
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A Y 5k 
Y ^ 0 0.2 0.4 0.6 Time (see) 

• Fx Mx • 

X 

B y -5000 

200 in w FzOb) 

Properties: 

A 2.0 in" 

Ixx 100 in^ 

lyy 50 in"* 

Izz 50 

E 29,000,000 psi 

M 0.3 

P 0.07 Ib.secVin"* 

P 0.01 

Results; 

X OI*plac«in«nt at  B 
«.l -
0 

^ -O-t -

£ «-
.M- • -

3 <4 
•as " 
•CM 

0 •.< eJ t.2 1.C 

Time (sec) 

Reaction at  A (Fx) 
MO -

200 -

~ •-

^ ̂  \ 
^ 2 :  \  

0 04 

Time (sec) 

Z Displacamant at  B 

Time (sec) 

Raactlon at  A (Fz) 

0 0.4 04 14 I 

Time (sec) 

Rotation at  B 

Time (sec) 

Reaction at  A (iMy) 

Time (sec) 

DYNTRN ANSYS 
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D.6 Example 6: Verification of the Dynamic Condensation Method 

Purpose; To verify the method of dynamic condensation presented in Chapter 3. 
A two span cable was analyzed due to static load. The intermediate node between the 
two cables was then released, and the falling cable analyzed using time integration. 
The problem was solved using DYNTRN, as well as ANSYS. In both cases, 10 axial 
elements were used to represent each span of the cable. Unlike ANSYS, in the 
DYNTRN analysis, the dynamic condensation method was used. In order to avoid 
numerical instabilities generated by the cable structure in ANSYS, the final 
coordinates of the cable due to static load were input in ANSYS as the initial 
coordinates. The tension in the static profile of the cable was accounted for in 
ANSYS using initial strain values. 

Loads: Uniform load of 0.1493 lb/in. 
Released restraint at intermediate node. 

Static load, w = 0.1493 lb/in, 
E = 9.399,250 psi, A= 1.335 in* 
Lo= 5997.223 in, 
p= 0.00029 (lb.secVin)/in^ 
Damping, P= 0.1 

Released for dynamic 
analysis 

A C 

6000 in 6000 in 
< >-< 

Properties; As shown in Figure. 

Results; 

Displacement of point B (in) Cable Tension at Point A (lb) 

Time (sec) 

DYNTRN ANSYS 
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D.7 Example 7: Galloping Forces Verification 

Purpose; To verify the galloping method explained in Chapter 4 for a single span cable fixed at 
both ends. 
The cable is subjected to a galloping amplitude of 60 inches in the first mode of 
vibration. The solution is compared to theory. Theoretical solution of the problem is 
presented in Appendix F. 

Loads: Uniform static load of 0.5 lb/sec. 
Galloping displacement in the shape and frequency of the first symmetric mode, with 
amplitude of 60 inches. 

Static load, w = 0.5 Ib/in, 
E = 10^ psi, A= I in* 
Ln= 6000 in, 
p= I.295E-3 (lb.secVin)/in^ 

^ 6000 in 
•< 

Properties: As shown in Figure. 

Results: 

Cable Tension at Point A (lb) 
Galloping AmpPtude (60 in) 

30000 -

0-1 , 1 
0 1 2 3 4 5 6 

Time (sec) 

DYNTRN Theory 
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D.8 Example 8: Verification of a Real Transmission Line 

Purpose: To verify the results of static and dynamic analyses of a complete transmission line 
with dimensions and properties comparable to actual transmission lines. 
For this purpose, three spans of an actual transmission line described in Reference [3] 
were analyzed using DYNTRN. The results were checked using ANSYS. In order to 
avoid numerical instabilities caused by cables in ANSYS, initial coordinates of the 
cable nodes that are close to the final static profile had to be used as input. The cable 
un-stretched length was accounted for in ANSYS using initial strains in the axial 
elements used to represent the cable. Some modifications were made to the data 
obtained from Reference [3], to make the problem easier to model, such as using a 
constant cross-section for the poles, instead of a tapered one. 

Loads: Stadc Load: 

Span 1 and Span 2 Span 3 

Conductors Self weight (0.1493 lb/in.) 0.5 in. ice (0.2493 Ib/in.) 

Shield wires Self weight (0.0431 lb/in.) 0.25 in. ice (0.0631 lb/in.) 

Dynamic load: 
The ice on span 3 was suddenly removed, and a dynamic analysis was performed. 

^ Span I (500 ft) ^ ^ Span 2 (500 ft) ^ ^ Span 3 (500 ft) ^ 

Conductor 
Shield wire 

SSI SS2 
•X 
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Geometry: Two identical support structures, SS1 
and SS2, located at the same vertical 
elevation, as shown in the figure. 

Properties; 

Pole Arm 

A 19.625 in.^ 4.12 in." 

Iy,lz 1533.2 in.-' 25.24 in." 

Ix 3066.4 in.-' 50.48 in." 

E 29E6 psi 29E6 psi 

0.3 0.3 

P 7.32E-4 
Ib.sec'/in."' 

7.32E-4 
Ib.secVin." 

108 in. 108 in. 

Ann 

Level 2 

Insulator 

Pole 

* Level 3 

* Level I 

B 

A 

I 
I 
I 

114 in. 

108 in. 

108 in. 

660 in. 

Insulator Conductor Shield wire 

Type Lapwing ACSR 45/7 0.5 in. EHS 

A 1.0 in." 1.335 in.- 0.1497 in.-

E 2,900,000 psi 9,399,250 psi 29,000,000 psi 

M 0.3 0.3 0.3 

P 0.0068 Ib.secVin.-* 0.00029 lb.secVin." 0.00075 Ib.secVin.-* 

Lo 84 in. 5997.223 in. 5997.709 in. 

Results; 
Static Results: 

Deformation at Point C, Structure SS2, in global axes 

Ux Uy Uz Rx Ry Rz 

DYNTRN 0.965 in. 1.306 in. -6.89E-3 in. -2.21E-3 rad 1.42E-3 rad -4.29E-5 rad 

ANSYS 0.963 in. 1.307 in. -6.89E-3 in. -2.21E-3 rad 1.42E-3rad -4.29E-5 rad 
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Forces and moments at Section A, Structure SS2, in the global axes 

Fx Fy Fz Mx My Mz 

DYNTRN 147.8 lb -5.798 lb -3,899 lb -127,400 Ib-in. 137,000 Ib-in. -2,008 Ib-in. 

ANSYS 147.8 lb -5.809 lb -3,901 lb -127,500 Ib-in. 136,660 Ib-in. -2,014 Ib-in 

Forces and moments at Section B, Structure SS2, in the global axes 

Fx Fy Fz Mx My Mz 

DYNTRN 19.33 lb -1.2181b 1,193 lb -128,900 Ib-in. 0.771 Ib-in. -2,087 Ib-in. 

ANSYS 19.28 lb -1.221 lb 1,1941b -128,940 Ib-in. 0.771 Ib-in -2,082 Ib-in 

Conductor end tension in Span 3 Insulator tension at SS2 

Level 1 Level 2 Level 3 Shield 
wire 

Level 1 Level 2 Level 3 

DYNTRN 11,1701b 11,1701b 11,1901b 3,311 lb 1,193 lb 1,1941b 1,193 lb 

ANSYS 11,1931b 11,192 lb 11,191 lb 3,3151b 1,1941b 1,195 lb 1,1941b 

Displacements and Rotations at Point C (Global Coordinates) 

Ux (In.)  Uy (In.)  Uz (in.)  

0 04 04 14 14 1 
Time (sec) 

• M U 1.S Z 
Time (sac) Time (sec) 

Rx (Rad) Ry(Rad) Ry (Rad) 

0 0.4 U 14 1 14 S4 

Time (sec) Time (sec) Time (sec) 

DYNTRN ANSYS 
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Internal Forces and Moments at Section A (Global Coordinates) 

Fx (lb) 

B 0  ̂ U X 14 u 
Time (sac) 

MX (Ib-in.)  

M 1.2 (A X X» 

Time (sec) 

Fy (lb) Fz (lb) 

• &« U U U X u 
Time (sac) 

My (Ib-ln.)  

3 1.4 IA 

Time (sec) 

• M M IJ t.a X X4 u 
Time (sec) 

Mz (Ib-in.)  

Time (sec) 

DYNTRN ANSYS 

Internal Forces and Moments at Section A (Global Coordinates) 

Fx (lb) Fy (lb) Fz (lb) 

2 

Time (sec) 

Mx (Ib-ln.)  

0 0  ̂ U t.« a tA lA 

Time (sec) 

a L4 ta i-a X 2A X* 
Time (sec) 

My (Ib-in.)  

« ^>4 M «.• s L4 u 

Time (sec) 

0 U t.« X 
Time (sec) 

Mz (Ib-ln.)  

Time (sec) 

DYNTRN ANSYS 
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Typical tension Forces in Span 3 

Conductor Tension (lb) Shiald WIra Tanaion (lb) 

MMi - • Y 

« a i - V  — •  

MM -

MM-

MM > 

::t 

t M M 1^ tJ 2 V* XJ 

Time (sec) 
• M U 14 S t4 X* 

Time (tec) 
• M u ta tA a a.4 XJ 

Tims (18C) 

DYNTRN ANSYS 



www.manaraa.com

122 

APPENDIX E - TENSION FORCES DUE TO A 

GALLOPING CONDUCTOR: THEORETICAL 

DEVELOPMENT 

Consider a conductor subjected to a general dynamic displacement, as shown in 

Figure E.l. The conductor is fixed at both ends, with a horizontal span, 1. Both ends of the 

cable are assmned at the same level. Studying a small portion of the cable, AB, the length of 

this portion due to the dynamic displacement is dP^ as shown in Figure E.l. According to the 

principle of elasticity, the tension due to the dynamic displacement can be calculated as: 

where, 

E = modulus of elasticity of the cable, 

A = cross sectional area of the cable, 

Td(S) = tension at distance S from the origin, due to the dynamic displacement, 

S = distance of the portion AB from the origin, measured along the un-stretched 

length of the cable, 

dS = un-stretched length of the portion AB of the cable. 

Using the relation between dP^, dx, du, dz and dw shown in Figure E.l, Equation E.l can 

Where x and z are the static coordinates of the cable in the direction of the X and Z axes, 

respectively, u and w are the dynamic displacements in the direction X and Z, respectively. 

TXS) = E A —- - 1 
dS , 

E.1 

be written as: 

E.2 
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Yz,w 
Dynamic Profile 

X,U 

Static Profile 

SJtati<LPmfile 
dx 

dP. xy 
B, 

Dynamic Profile 

^x+d\^^ 

B,. 

Figure E.l A conductor subjected to a general dynamic displacement 

Equation E.2 can be written as: 

TXS) = E A ' — + "+f ^ " 
dS * dxds] 1̂ 15] 

- 1 

^ ) 
E.3 

For a conductor galloping in one of the mode shapes of the cable, the quantities in 

Equation E.3 can be calculated as discussed next. 

The dynamic displacements, u and v, for a galloping conductor can be calculated as: 

u{x) = Ag M^{x) sin(o)0 

w(x) = A^ MJ^x) sin(a)r) 
E.4 
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where, 

Ag = galloping amplitude, 

M(,(x) = normalized mode shape in the longimdinal, X, direction, 

M^(x) = normalized mode shape in the vertical, Z, direction, 

G) = frequency of the galloping motion in radian/seconds, 

t = time in seconds. 

The equations used to calculate the mode shapes, Mh(x) and My(x), are listed in 

Chapter 2. The equations are normalized, so that the maximum value of the resulting mode 

shape is equal to one. 

Using Equations E.4, the quantities, du/dx and dw/dx can be calculated, by 

differentiating the equations with respect to the variable x. Both du/dx and dw/dx are 

evaluated at a value of x = x(S), calculated as follows [8], 

HS 
/ 

asinh - asinh 
' mgLo mgS 

\ 

EA mg \ [ 2H J [ 2H H J / 

where, 

H = static horizontal tension in the conductor, 

m = mass per unit length of the loaded conductor, 

g = acceleration of gravity, 

Lq = un-stretched length of the conductor. 

Finally, the quantities, dx/dS and dz/dS, can be calculated as [8]: 

dx _ H 

dS EA 

^ 
dS EA 

H 

0.5 -
2Z,„ 

0.5mgS 

EA 

E.6 

H-

- nigS\ 
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Using Equations E.4, E.5, E.6, Equation E.3 can be evaluated for any time t. In this way, 

the tension in the galloping conductor can be calculated. 

The tension in the conductor due to static load alone can be calculated as [8]; 

- rngS E.7 
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APPENDIX F: EXPERIMENTAL DATA 

This appendix contains information about the experimental data used to verify DYNTRN 

as explained in Chapter 4. The data presented in this appendix is obtained using direct scans 

from References [1,2,3]-

F.l Experimental Data for the Broken Insulator/ Broken Conductor Analysis [1] 

Drop Insulator 

4. J "32 
Left 

Figure F.l Transmission Line Tested in Reference [1] 
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•o 

•«# 
I 

V 

I 

(0 

<0 

t/) 01 

'<0 

X 
s'-y Ls* fc', 1 .s*-v 

^ a'-o' 
SecTioKi AA 

a'-fc- L W-o* 
a'-9' 

HAur SgCTiOKJ & B 

la'-o* 
16'-9' 

Haup 5ecT\OM CC 

Suspewsi  OM TOWER 

Member Sectior. 

1 L 3-1/2 X 3-1/2 X 1/4 

2 L 5 X 5 X 5/16 
3 do 
4 do 
5 do 
6 L 2-1/2 X 2-1/2 X 3/16 

7 L 2-1/2 X 2 X 3/16 

8 L 2-1/2 X 2-1/2 X 3/16 
9 do 
10 do 
11 L 3 X 3 X 3/15 
12 L 1-1/2 X 1-1/2 X 3/lfa 
13 L 3 X 3 X 3/16 
14 L 1-1/2 X 1-1/2 X 3/16 
15 2 LS3 X 2-1/2 X 3/16 

16 L 3-1/2 X 3-1/2 X 3/16 
17 L 4 X 3 X 1/4 
18 r. 3 X 3 X 3/16 
19 I. 2 X 2 X 3/16 
20 If 2 X 2 X 3/16 

21 L 2 X 2 X 3/16 

Figure 3-2. Typical Tangent Tower 
(Towers T2 through T8) 

Figure F.2 Support Structure used in the Broken Conductor/Insulator Analysis [1] 
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(U) 

( U )  

21 ' 

Piqurc 3-3 Kmy Joint* tnd Heflban on Tuiqet.t Tofr 

Figure F.3 3-D View of the Support Structures in Reference [1] 

Physical Properties 

Conductor 
Description 
Size S Type 

Modulus 
„ . . of Elast. Area 
Weight Strength , 
(kgf/m) (kqf/mni ) (kqf) (ram ) 

397 kcmil ACSR 

471A copper/bronze 

7-#8 gauge steel 

0.814 7,100 7,393 234 

1.296 10,500 6,990 193 

0.479 16,000 5,140 58 

Figure F.4 Conductor and Shield Wire Properties [1] 
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Table 6-1 

EPRI WISCONSIN AND OTHER BROKEN INSULATOR TESTS 
Data recorded at tower adjacent to tower where insulator break occurs 

1 meter = 3.28 feet 1 kilogram-force = 2.21 pounds 

L  
left of 
break 
(H") 

L 
right of 
break 
(m) 

Insulator Forces 
1 

L  
left of 
break 
(H") 

L 
right of 
break 
(m) 

I 
(m) 

Test 
» 

^i 
(kqf) 

FV^ 

(kqf) 

F  
P 
(kqf) 

''f 
(kqf) 

F 
_E 
T. 

I 

F FH ' 

T. 
1 

eriod 
(sec) 

Wisconsin 
(Full Scale) 282 265 2.2 1IR2 1948 497 887 633 .46 1.78 .207 6.4 

IIU 1268 313 613 462 .48 1.96 ,206 6.0 

IIL2 1812 313 492 403 .27 1.58 .076 6.0 

4.3 IVRl 1631 497 916 647 .56 1.84 .140 5.2 

IVLl 1450 313 492 372 . 34 1.58 .064 6.0 

IVL2 1685 313 492 403 .29 1.58 .041 5.6 

Comellini 
(Model) 

400 >2.0 

BPA 
(Model) 

351 .46 
to 

.77 

1.7 
to 
2.8 

.25 
to 

.41 

HI (21 HI l4l 15] 16] [7] 18] [9] [10] (11] {12] (13] 



www.manaraa.com

rorce ir. Insulator (F) 

or Conductor (T) 

F = 1 = Largest Peak Tension 
P P 

Peak 2 
Peak 1 

Rise Time Between 

First Two Peaks rime 

Slack Time 

Definitions of 

Impact Factors 
IFI(7) = ^ _£ IFF(T) = 

Figure 6.3. Broken conductor phenomenon. 
Thick line shows tension variation in insulator. 
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li'l'KI WISCONSIN BROKEN CONDUCTOR TESTS - CONDUCTOR TENSION IN SPAN 3 (NEXT TO BREAK) 
1 kilogram-forco 2.!^1 pounds 1 meter = 3.28 feet 

Tost 
II 

I T. 
1 

I k g f )  
•^f 

IFF(T) I FX (T) 
Slack 
time 

Time 
to 
1st 
peak 

Time 
to 
2nd 
peak 

Tost 
II (m) 

T. 
1 

I k g f )  T 1 pi \ 2  P3 
1 

(kgf) Data Covers Energy Data Covers Borges 
Slack 
time 

Time 
to 
1st 
peak 

Time 
to 
2nd 
peak 

IIIRl 2.2 1903 2510 3249* 2067 1122 2.89 3.35 3.04 1.71 1.42 1.70 .27 .50 1.46 

TriR2 2.2 1948 2510 3544* 2659 1123 3.15 3.36 3,05 1.82 1.41 1.70 .27 .50 1.50 

IHR3 2.2 Broken am 

IIILl 2.2 1268 1525 2067* iiai 710 2.01 3.40 3.09 1.63 1. 39 1.65 ,30 ,57 1.28 

IIIL2 2.2 1812 2067 2510* 1743 886 2.83 >3.6 3.34 1.38 <1.35 1.35 .27 .47 1.28 

iriL3 2.2 2174 2510» 2215 2067 951 2.64 >3.6 3,40 1.15 <1.35 1.15 .21 ,39 1,20 

VRl 4,3 1631 2749 3044* 770 3.95 4.02 3.12 1.87 1,60 - .42 .87 1,68 

VR2 4.3 1857 2584 2289 2953* flu 3.64 4.19 3.22 1.59 1,43 - .47 .80 1.63 

VK3 4.3 Broken arm 

VLJ 4.3 1450 1477* 1329 738 521 2.B3 >4.6 3.40 1.02 <1, 38 - .48 .78 1.50 

VL2 4.3 1685 « 544 No load cell data .50 .80 1.70 

VLJ 3.7 2401 2504 2655* 738 3.60 >4.6 3.87 
I ' "  

<1, 38 - .25 .57 1.40 

i n  121 13] 14) 15) [61 |7) (8) (9) (101 ( I I I  112] (nj  (14) 115] (Ife] 

* indicates Iflrjesl. peak force 
Note: Symbols > or < in columns (9] and (17J mean "larger than" or "less tlian". lixact values could not 

be determined from rover's charts. 
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Table 6-4 

CPRT WISCONSIN BROKIvN COMnUCTOR TESTS - FORCE IN INRIII.A'^OP RTRINH 
AT TOWER T4 (SECOND T C M B R )  

1 kilogram-force = 2.21 pounds 1 meter = 3.28 feet 

. 
(m) 

F 
i 

(kgt) 
F 
slack •"pl ^P2 

F 
f 

(kgf) IFI(F) IFP(F) 

Slack 

time 
(sec) 

Time 
to 

first 
peak 

Time 

to 
second 
peak 

IIIRI 2.2 4 9 7  102 1136* 1136* 649 2.28 1.75 .33 .50 1.29 

lIIRl-a 2.2 497 102 900 1300* 1000 3.00 1.30 .34 .62 1.27 

IIIR2 2.2 497 75 1282* 1161 649 2.57 1.98 .31 .47 1.30 

I1IP.3 2.2 497 46 1128* 807 617 2.27 1.83 .28 .49 1.32 

IIILl 2.2 313 71 675 916* 373 2.93 2.46 .30 .53 1.19 

IIIL2 2.2 313 42 883 941* 373 3.02 2.53 .26 .47 1.29 

IIIL3 2.2 313 71 1067* 705 373 3.41 2.86 .21 .43 l.LO 

VRl 4.3 497 107 1008* 1008* 527 2.03 1.91 .42 .62 1.45 

VR2 4. 3 

VLl 4.3 313 41 815 313 2.61 2.61 .40 

VL2 4.3 313 10 916* 795 313 2.93 2.93 .42 .59 1.02 

VL3 3.7 313 0 765* 705 343 2.45 2.23 .25 .52 1.46 

* indicates largest peak 
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F.2 Experimental Data for the Broken Shield Wire Analysis [3] 

WIRES-SERIES E 
0H»: 

w = 
AE = 

COND: 
• = 
AE = 

24 6A. BUS BAR WITH LEAD WEIGHTS 
.0132 LB/FT. 
3300 LB. 
18 6A. COPPER WIRES WITH LEAD WEIGHTS 
.0597 LB/FT. 
12,100 LB. 

WALL ANCHOR 

SPAN 3 

SPAN 2 

© 

SPAN 1 TANGENT 
STRUCTURE 2 

STRINGING 
PULLEY 

STRA N GAGES 

DEAD-END 
CLAMP 

LEGEND 

0 WIRE SEGMENT NUMBER 

3 ATTACHMENT POINT NUMBER 
AND INSULATOR NUMBER 

• INDICATES ITEM OMITTED 
FOR TEST SERIES C t E 

32.0 FT. (TYPICAL) 

TANGENT STRUCTURE 1 (TYPICAL) 

POLE; .666 INCH PIPE 
Sa.O INCHES HIGH 

ARMS;- .478 INCH PIPE 
5.56 INCHES LONG 

1 ft. r 0.301(8 B 

1 in. = 25.« n 
1 ID. = II 
1 

= (•>.59 H/a 
1 >lug = |it.59 kg 

Figure F-l. Schematic of Test Setup 

Figure F.9 Test Setup for the Broken Shield Wire Case Study [3] 
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SHIELD WIRE CLAMP 

ARM BENDING STRAIN GA6ES 
FRONT AND BACK 

-a.8 LBS. LUMPED MASS 
(FOR TESTS WITH MASS ADDED) 

I F ~ NVN I IV AK MLAFEA W(T/« W|«| 
SCH. MS. 6RA0E B PIPE HACHINED 

o 

STEEL ROD (Dp = .550") | 

SUSPENSION INSULATOR 
1.97 

5.56' CONDUCTOR CLAMP 

-2 STEEL PLATES 2 X '/g X 39" 

BOLTED TO PIPE , 
(FOR TESTS WITH STIFFENED POLE) 

SECOND SUSPENSION 
INSULATOR OMITTED 
FOR TEST SERIES 
C,D AND E. 

B" NOMINAL 
IS, GRADE B 
L = .666", 

SIZE, STD. tfT., SCH. 
PIPE 
Dj = .M6") 

POLE SENDING STRAIN GAGES -
FRONT AND BACK 

ft. = 0.30M8 • 
in, = 25.11 an 
lb. = N 

lb. = 0.0685 a/N 

NOTES: 
1. CENTERLINE OF POLE TO ARM END MEASURES 5.7 INCHES. 

2. STRAIN GAGES ARE ON TOWER ONE ONLY. 

A. AS-BUILT MODEL SUPPORT STRUCTURE - SERIES E 

= 

UNSTIFFENED 
0.271 0.173 12: 
0.173 0.126'"" 

0.070 0.046 i!L 
0.046 0.043"'-

B. AS-BUILT FLEXIBILITY MATRICES 

Figure F-2. As-Bxiilt Model Support structure and Flexibility Matrices 

Figure F.IO Scale-Model for the Support Structures used in Reference [3] 
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Figure F.ll Broken Shield Wire Results - Test E54 [3] 
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Table F-5 

TRACE CALIBRATION FACTORS FOR SCRIES E MODEL TESTS 

Arm Load Ground-Line Arm Load Ground-Line 
(Horizontal) Moment (Horizontal) Moment 

Test (Ib/nm.l {in-lb/mm.) Test (lb/mm.) (in-lb/tran.) 

E2 0.52 28.0 E30 0.50 20.0 
E3 • • C31 0.49 19.7 
E4 0.48 19.5 E32 0.50 20.6 
E5 1* « E33 0.49 19.7 
E6 II fl E34 0.50 20.6^41.0 
E7 m m E35 m • 

E8 m m E36 m 20.0 
E9 • m E37 n 20.6 
ElO « m E38 n 20.8 
Ell 0.47 m E39 m M 

E12 • 0 E40 0.48 -

E13 M m E41 M 
-

E14 0.50 20.0 E42 N -

El 5 fl m E43 II -

E16 m E44 N -

El 7 • m E45 « -

E18 0.51 00
 

• o
 

E46 • -

El 9 m E47 K -

E20 m 19.5 E48 0.52 -

B21 • m E49 • -

E22 m 19.5/20.5 E50 IV -

E23 m 41.0 E51 fl -

E24 n 20.5 E52 0.49 19.9 
E25 M 19.5 E53 It n 

E26 n M E54 0.50/0.25 19.9/10.0 
E27 0.50 20.6 E55 0.50/0.25 19.9/10.0 
E28 a m E56 0.25 10.0 
E29 n m E57 fl • 

1 lb = 4.448 N 
1 in = 25.4 nan 

Figure F.12 Scale Factors for Result Graphs - Test E54 [3] 
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DATA TRACES 
SCALE MODEL TESTS 

Test E54A 
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Figure F.13 Broken Shield Wire Test Results - Test E54 [3] 
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F3 Experimental Data for the Conductor Galloping Analysis [2] 

0 FT 

" INS 

CON 

1 

:Vertical 

icenter line 

Motion FT 0 

INS --

North 

FT force transducer 

INS Insulator 

CON Conductor 

TD Test device to control 
galloping. 

Support structure 

//////////////////////////// 

Fig. 3. Schematic of test device on power pole with force and motion 
sensors indicated. 

North 

IT 
657 483 797 

West -)-(•« 
658 666 

->f6- East 
Span A Span B 

IT instrumented tower. 

Fig. 4. Support tower spacing in vicinity of test sight. 

Figure F.14 Transmission Line Tested in Reference [2] 
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a) 
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I 
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TimeiMe) 
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8. Largest force time histories for a) line 3 when 8.1 mph wind (40 

degrees relative to the line) is blowing on 14 February from 22:10 

hrs data set and b) line 1 when 21.1 mph wind (42 degrees relative 

to the line) is blowing on 15 Februai^ from 11:30 hrs data set. 

Figure F.15 Real Galloping Data: Insulator Force between Spans A and B [2] 
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Table 5. Force Analysis for 14 February 1995 at 22:10 hrs, 8.1 mph wind. 

1Force Mean Range RMS 
1 ^2 I ^3 -^3 ! ^4 ^^4 

1Locat lbs lbs lbs Hz lbs | H Z  lbs Hz lbs Hz lbs 

938 85 13.2 - - 0.54 2.8 0.93 7.5 - _ 

1 ^2 
979 75 11.1 

1 -
- 0.55 3.4 0.67 4.6 0.93 3.54 

*'•3 
928 332 62.0 0.28 55.4 0.46 36.0 0.57 23.0 0.95 

" 1  
" force with greatest activity. 

Figure F.16 Frequency Analysis for Galloping Force Data [2] 
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